全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

基于函数复杂度的自适应模拟退火和禁忌搜索新算法

DOI: 10.3969/j.issn.0372-2112.2012.06.025, PP. 1218-1222

Keywords: 函数复杂度,模拟退火算法,禁忌搜索算法,函数优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

在求解多峰复杂函数的过程中,传统的模拟退火算法和禁忌搜索算法经常出现算法快速收敛于局部最优解、后期收敛速度变慢和搜索能力变差等问题.为解决这些问题,本文给出函数复杂度的定义,并提出基于函数复杂度的自适应模拟退火和禁忌搜索算法.该算法首先根据函数复杂度自适应调整步长控制参数,然后根据调整后步长求得函数的粗糙解,在此基础上再使用初始步长求得全局最优解.实验表明,该算法不仅可以跳出局部最优解的限制,并且减少了迭代次数,有效地提高了全局和局部搜索能力.

References

[1]  康立山,谢云.非数值并行计算——模拟退火算法[M].北京:科学出版社,1998.22-55
[2]  BATTITI R,TECCHIOLLI G.The reactive tabu search[J].ORSA Journal on Computing,1994,6(2):126-140.
[3]  李铁,王航字,等.目标表面BRDF统计建模中的遗传模拟退火算法[J].量子电子学报,2008,25(4):489-492. LI Tie,WANG Hangyu,et al.Application of genetic simulated annealing algorithm in BRDF statistical modeling[J].Chinese Journal of Quantum Electronics,2008,25(4):489-492.(in Chinese)
[4]  王登刚,刘迎曦,等.最优化问题全局寻优的混合遗传算法[J].力学学报,2002,34(3):0471-0473.
[5]  周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版,2005.125-127.
[6]  张火明,陆慧娟,等.混合离散变量模拟退火方法及其应用[J].中国计量学院学报,2006,17(1):44-49. ZHANG Huoming,LU Huijuan,et al.Improvement and application of annealing simulation method for hybrid discrete variables[J].Journal of China Jiliang University,2006,17(1):44-49.(in Chinese)
[7]  谢云.模拟退火算法综述[J].计算机应用研究,1998(5):7-9.
[8]  GLOVER F.Tabu search:PartⅡ[J].ORSA Journal on Computing,1990,2(1):4-32.
[9]  GLOVER F.Tabu search:Part I[J].ORSA Journal on Computing,1990,1(3):190-206.
[10]  宋炜,刘强.基于模拟退火算法的过程挖掘研究[J].电子学报,2008,36(4A):35-139. SONG Wei,LIU Qiang.Business process mining based on simulated annealing[J].Acta Electronica Sinica,2008,36(4A):35-139.(in Chinese)
[11]  雍正正,罗萍,等.一种进化模拟退火矢量量化图像编码新算法[J].电子学报,2001,29(5):1-4. YONG Zhengzheng,LUO Ping,et al.A new vector quantization image coding algorithm based on evolutionary simulated annealing[J].Acta Electronica Sinica,2001,29(5):1-4.(in Chinese)
[12]  张昊,陶然,等.基于KNN算法及禁忌搜索算法的特征选择方法在入侵检测中的应用研究[J].电子学报,2009,37(7):1628-1632. ZHANG Hao,TAO Ran,et al.A research and application of feature selection based on KNN and tabu search algorithm in the intrusion detection[J]. Acta Electronica Sinica,2009,37(7):1628-1632.(in Chinese)
[13]  蓝海,王雄,等.复杂函数全局最优化的改进遗传退火算法[J].清华大学学报(自然科学版),2002,42(9):1237-1240. LAN Hai,WANG Xiong,et al.Improved genetic-annealing algorithm for global optimization of complex functions[J].J Tsinghua Univ (Sic &.Tech),2002,42(9):1237-1240.(in Chinese)
[14]  陈龙,朱宏.改进的模拟退火遗传算法在函数优化中的应用[J].计算机与数学工程,2010,38(7):13-16. CHEN Long,ZHU Hong.Application of improved simulated annealing genetic algorithm in function optimization[J].Computer & Digital Engineering,2010,38(7):13-16.(in Chinese)
[15]  石运序,范红梅.改进的遗传模拟退火算法在多峰值函数优化中的应用[J].烟台大学学报(自然科学与工程版),2008,21(3):209-212.
[16]  Young-Jae Jeon,Jae-Chul Kin.Application of simulated annealing and tabu search for loss minimization in distribution systems[J].Electrical Power and Energy Systems,2004,26(1):9-18.
[17]  张晓菲,张火明.基于连续函数优化的禁忌搜索算法[J].中国计量学院学报,2010,21(3):251-256. ZHANG Xiaofei,ZHANG Huoming.Improved tabu search algorithm for continuous problems[J].Journal of China University of Metrology,2010,21(3):251-256.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133