Landgrebe D.Information extraction principles and methods for multispectral and hyperspectral image data[A].Chen C H, Information Processing for Remote Sensing[M].New Jersey:the World Scientific Publishing Co,2000.
[2]
Wu Hao, et al.An unsupervised classification method for hyperspectral image combining PCA and gaussian mixture model[A].Proc.of the 3rd Inter.Symposium on MIPPR, SPIE Vol.5286[C].Beijing, MIPPR,2003.729-734.
[3]
吴翊,李永乐,胡庆军.应用数理统计[M].长沙:国防科技大学出版社,1995.285-303.
[4]
A K Jain, R Dubes.Algorithms for Clustering Data[M].New Jersey:Prentice Hall, 1988.
[5]
Mark H Hansen, Bin Yu.Model selection and the principle of minimum description length[J].Journal of the American Statistical Association,2001,96:746-774.
[6]
J Rissanen.Modeling by shortest data description[J].Automatica,1978,14:165-471.
[7]
Dempster A P, Laird N M, Rubin D B.Maximum-likelihood from incomplete data via the EM algorithm[J].J Royal Stat.Soc.Ser.B,1977,39:1-38.
[8]
Redner R A, Walker H F.Mixture density, maximum likelihood and the EM algorithm[J].SIAM Review, 1984,26(2):195-239.
[9]
Mario A T Figueiredo, Jose M N Leitao, Anil K Jain.On fitting mixture models[J].Hancock E, Pellilo M(Edt.), Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer-Verlag,1999:54-69.
[10]
Mario A T Figueiredo, Anil K Jain.Unsupervised learning of finite mixture models[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, PAMI-24:381-396.