全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2003 

图像的多尺度几何分析:回顾和展望

, PP. 1975-1981

Keywords: 多尺度几何分析,小波变换,Bandelet变换,脊波变换,单尺度脊波变换,Curvelet变换,Contourlet变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

多尺度几何分析旨在构建最优逼近意义下的高维函数表示方法.本文以二维函数的非线性逼近为主线,分析了推动多尺度几何分析发展的深刻数学和生理学背景,综述了图像多尺度几何分析方法的最新进展及存在的问题,指出了进一步研究的方向.

References

[1]  EJ Candès.Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
[2]  Candès E J, D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University, 1999.
[3]  M N Do, M Vetterli.Contourlets[A].J Stoeckler, G V Welland.Beyond Wavelets[C].Academic Press, 2002.
[4]  Stephane Mallat.信号处理的小波导引[M].杨力华,等,译.北京:机械工业出版社,2003.
[5]  M Vetterli.Wavelets, approximation and compression[J].IEEE Signal Processing Magazine,2001,18(5):59-73.
[6]  R A DeVore.Nonlinear approximation[A].Acta Numerica[M].Cambridge University Press, 1998.
[7]  D L Donoho.Orthonormal ridgelets and linear singularities[R].USA:Department of Statistics, Stanford University, 1998.
[8]  X Xue, X Wu.Image representation based on multi-scale edge compensation[A].IEEE Internat.Conf.on Image Processing[C].IEEE, 1999.
[9]  A Cohen, B Matei.Nonlinear subdivisions schemes:Applications to image processing[A].A Iske, E Quack, M Floater.Tutorial on Multiresolution in Geometric Modeling[M].Springer,2002.
[10]  P L Dragotti, M Vetterli.Footprints and edgeprints for image denoising and compression[A].Proc IEEE Int Conf on Image Proc[C].Thessaloniki, Greece, Oct.2001.237-240.
[11]  M B Wakin, J K Romberg, H Choi, R G Baraniuk.Rate-distortion optimized image compression using wedgelets[A].Proc IEEE Int Conf on Image Proc[C].Rochester, New York, Oct.2002.
[12]  R Shukla,P L Dragotti, M N Do, M Vetterli.Rate-distortion optimized tree structured compression algorithms for piecewise smooth images[DB/OL].Submitted to IEEE Trans on Image Processing, http://www.ifp.uiuc.edu/minhdo/publications, 2003.
[13]  E Le Pennec,S Mallat.Non linear image approximation with bandelets[R].CMAP Ecole Polytechnique,2003.
[14]  侯彪,刘芳,焦李成.基于脊波变换的直线特征检测[J].中国科学E,2003,33(1):65-73.
[15]  侯彪.脊波和方向信息检测方法及应用[D].陕西西安:西安电子科技大学,2003,4.
[16]  E J Candes.On the representation of mutilated sobolev functions[J].SIAM J.Math.Anal, 1999,33:2495-2509.
[17]  D L Donoho, M R Duncan.Digital curvelet transform:strategy, implementation and experiments[A].Proc.Aerosense 2000, Wavelet Applications Ⅶ[C].SPIE, 2000.4056.12-29.
[18]  P J Burt, E H Adelson.The Laplacian pyramid as a compact image code[J].IEEE Trans, 1983, Communication-31(4):532-540.
[19]  M N DO, M Vetterli.Framing pyramids[J].IEEE Trans, 2003, Signal Proc-51(9):2329-2342.
[20]  M N Do.Directional Multiresolution Image Representations[D].Lausanne, Switzerland:Swiss Federal Institute of Technology, December2001.
[21]  M Porat, Y Y Zeevi.The generalized Gabor scheme of image representation in biological and machine vision[J].IEEE Trans, 1988, Patt.Recog.and Mach.Intell.-10(4):452-468.
[22]  E P Simoncelli, W T Freeman, E H Adelson, D J Heeger.Shiftable multiscale transforms[J].IEEE Trans, 1992, Information Theory-38(2):587-607.
[23]  F G Meyer, R R Coifman.Brushlets:a tool for directional image analysis and image compression[J].Applied and Computational Harmonic Analysis, 1997,5:147-187.
[24]  M N Do, M Vetterli.Contourlet:a computational framework for directional multiresolution image representation[DB/OL].Submitted to IEEE Trans on Image Processing, http://www.ifp.uiuc.edu/~minhdo/publications, 2003.
[25]  Coifman R R, M V Wickerhauser.Entropy-based algorithms for best basis selection[J].IEEE Trans, 1992, Information Theory-38:1713-1716.
[26]  Deng B, B Jawerth, G Peters, W Sweldens.Wavelet probing for compression-based segmentation[A].Proc SPIE Symp Math Imaging:Wavelet Applications in Signal and Image Processing[C].San Diego,1993.
[27]  Donoho D L.Minimum entropy segmentation[A].C K Chui, L Montefusco, L Puccio.Wavelets:Theory, Algorithms and Applications[M].San Diego:Academic Press, 1994.233-270.
[28]  A Averbuch, R R Coifman, D L Donoho, M Israeli, J Walden.Fast slant stack:A notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible[R/OL].http://www.math.tau.ac.il/~amir1/, 2001.
[29]  E J Candes, D L Donoho.New tight frames of curvelets and optimal representations of objects with smooth singularities[R].USA:Department of Statistics,Stanford University,2002.
[30]  J L Starck, F Murtagh, E Candes, D L Donoho.Gray and color image contrast enhancement by the curvelet transform[J].IEEE Trans,2003,Image Processing-12(6):706-717.
[31]  E J Candès.Monoscale Ridgelets for the Representation of Images with Edges[R].USA:Department of Statistics, Stanford University, 1999.
[32]  E L Pennec, S Mallat.Image compression with geometrical wavelets[A].In Proc.of ICIP''2000[C].Vancouver, Canada, September,2000.661-664.
[33]  D L Donoho,M Vetterli,R A DeVore, I Daubechies.Data compression and harmonic analysis[J].IEEE Trans, 1998, Information Theory-44(6):2435-2476.
[34]  D L Donoho.Sparse component analysis and optimal atomic decomposition[J].Constructive Approximation, 1998,17:353-382.
[35]  D H Hubel, T N Wiesel.Receptive fields, binocular interaction and functional architecture in the cat''s visual cortex[J].Journal of Physiology, 1962,160:106-154.
[36]  B A Olshansen, D J Field.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381:607-609.
[37]  David L Donoho, Ana Georgina Flesia.Can recent innovations in harmonic analysis ‘explain'' key findings in natural image statistics[J].Network:Computation in Neural Systems, 2001,12(3):371-393.
[38]  S Carlsson.Sketch based coding of gray level images[J].IEEE Trans,1988, Image Processing-15(1):57-83.
[39]  J Elder.Are edges incomplete[J].International Journal of Computer Vision, 1999,34(2):97-122.
[40]  S Mallat, S S Zhong.Wavelet transform maxima and multiscale edges[A].B R, et al.Wavelets and Their Applications[M].Boston:Jones and Bartlett, 1992.
[41]  A Cohen, B Matei.Compact representation of images by edge adapted multiscale transforms[A].Proc IEEE Int Conf on Image Proc, Special Session on Image Processing and Non-Linear Approximation[C].Thessaloniki, Greece, invited paper, Oct.2001.
[42]  D L Donoho.Wedgelets:nearly-minimax estimation of edges[J].Ann Statist, 1999,27:859-897.
[43]  E Le Pennec, S Mallat.Sparse Geometric Image Representation with Bandelets[DB/OL].Submitted to IEEE Trans on Image Processing,http://www.cmap.polytechnique.fr/~mallat/papiers, 2003.
[44]  E J Candès.Harmonic analysis of neural networks[J].Applied and Computational Harmonic Analysis, 1999,6:197-218.
[45]  焦李成,侯彪,刘芳.脊函数网络逼近:进展与展望[J].工程数学学报,2002,19(1):21-36
[46]  E J Candès, D L Donoho.Curvelets:a surprisingly effective nonadaptive representation for objects with edges[A].L L S, et al.Curves and Surfaces[M].Nashville:Vanderbilt University Press, 1999.
[47]  R H Bamberger, M J T Smith.A filter bank for the directional decomposition of images:Theory and design[J].IEEE Trans, 1992, Signal Proc-40(4):882-893.
[48]  M N Do, M Vetterli.Pyramidal directional filter banks and curvelets[A].Proc IEEE Int Conf on Image Proc[C].Thessaloniki, Greece,Oct.2001.
[49]  J Daugman.Two-dimensional spectral analysis of cortical receptive field profile[J].Vision Research, 1980,20:847-856.
[50]  A B Watson.The cortex transform:Rapid computation of simulated neural images[J].Computer Vision, Graphics, and Image Processing,1987,39(3):311-327.
[51]  J P Antoine, P Carrette, R Murenzi, B Piette.Image analysis with twodimensional continuous wavelet transform[J].Signal Processing, 1993,31:241-272.
[52]  N Kingsbury.Complex wavelets for shift invariant analysis and filtering of signals[J].Applied and Computational Harmonic Analysis, 2001,10(3):234-253.
[53]  Y Lu, M N Do.CRISP-Contourlet:A critically sampled directional multiresolution image representation[A].Proc SPIE Conf on Wavelets X[C].San Diego, Aug.2003.
[54]  Donoho D L, I M Johnstone.Empirical Atomic Decomposition[Z].Manuscript, http://www-stat.stanford.edu/~donoho/reports.html,1995.
[55]  Donoho D L.Wedgelets:nearly minimax estimation of edges[J].Ann.Statist, 1999,27:859-897.
[56]  J L Starck, E J Candès, D L Donoho.The curvelet transform for image denoising[J].IEEE Trans, 2002, Image Processing-11(6):670-684.
[57]  E J Candès, D L Donoho.Recovering edges in ill-posed inverse problems:Optimality of curvelet frames[R].USA:Department of Statistics,Stanford University, 2000.
[58]  J L Starck, E Candes, D L Donoho.Astronomical image representation by the curvelet transform[J].Astronomy and Astrophysics, 2003,398:785-800.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133