M Vetterli.Wavelets, approximation and compression[J].IEEE Signal Processing Magazine,2001,18(5):59-73.
[6]
R A DeVore.Nonlinear approximation[A].Acta Numerica[M].Cambridge University Press, 1998.
[7]
D L Donoho.Orthonormal ridgelets and linear singularities[R].USA:Department of Statistics, Stanford University, 1998.
[8]
X Xue, X Wu.Image representation based on multi-scale edge compensation[A].IEEE Internat.Conf.on Image Processing[C].IEEE, 1999.
[9]
A Cohen, B Matei.Nonlinear subdivisions schemes:Applications to image processing[A].A Iske, E Quack, M Floater.Tutorial on Multiresolution in Geometric Modeling[M].Springer,2002.
[10]
P L Dragotti, M Vetterli.Footprints and edgeprints for image denoising and compression[A].Proc IEEE Int Conf on Image Proc[C].Thessaloniki, Greece, Oct.2001.237-240.
[11]
M B Wakin, J K Romberg, H Choi, R G Baraniuk.Rate-distortion optimized image compression using wedgelets[A].Proc IEEE Int Conf on Image Proc[C].Rochester, New York, Oct.2002.
[12]
R Shukla,P L Dragotti, M N Do, M Vetterli.Rate-distortion optimized tree structured compression algorithms for piecewise smooth images[DB/OL].Submitted to IEEE Trans on Image Processing, http://www.ifp.uiuc.edu/minhdo/publications, 2003.
[13]
E Le Pennec,S Mallat.Non linear image approximation with bandelets[R].CMAP Ecole Polytechnique,2003.
E J Candes.On the representation of mutilated sobolev functions[J].SIAM J.Math.Anal, 1999,33:2495-2509.
[17]
D L Donoho, M R Duncan.Digital curvelet transform:strategy, implementation and experiments[A].Proc.Aerosense 2000, Wavelet Applications Ⅶ[C].SPIE, 2000.4056.12-29.
[18]
P J Burt, E H Adelson.The Laplacian pyramid as a compact image code[J].IEEE Trans, 1983, Communication-31(4):532-540.
[19]
M N DO, M Vetterli.Framing pyramids[J].IEEE Trans, 2003, Signal Proc-51(9):2329-2342.
[20]
M N Do.Directional Multiresolution Image Representations[D].Lausanne, Switzerland:Swiss Federal Institute of Technology, December2001.
[21]
M Porat, Y Y Zeevi.The generalized Gabor scheme of image representation in biological and machine vision[J].IEEE Trans, 1988, Patt.Recog.and Mach.Intell.-10(4):452-468.
[22]
E P Simoncelli, W T Freeman, E H Adelson, D J Heeger.Shiftable multiscale transforms[J].IEEE Trans, 1992, Information Theory-38(2):587-607.
[23]
F G Meyer, R R Coifman.Brushlets:a tool for directional image analysis and image compression[J].Applied and Computational Harmonic Analysis, 1997,5:147-187.
[24]
M N Do, M Vetterli.Contourlet:a computational framework for directional multiresolution image representation[DB/OL].Submitted to IEEE Trans on Image Processing, http://www.ifp.uiuc.edu/~minhdo/publications, 2003.
[25]
Coifman R R, M V Wickerhauser.Entropy-based algorithms for best basis selection[J].IEEE Trans, 1992, Information Theory-38:1713-1716.
[26]
Deng B, B Jawerth, G Peters, W Sweldens.Wavelet probing for compression-based segmentation[A].Proc SPIE Symp Math Imaging:Wavelet Applications in Signal and Image Processing[C].San Diego,1993.
[27]
Donoho D L.Minimum entropy segmentation[A].C K Chui, L Montefusco, L Puccio.Wavelets:Theory, Algorithms and Applications[M].San Diego:Academic Press, 1994.233-270.
[28]
A Averbuch, R R Coifman, D L Donoho, M Israeli, J Walden.Fast slant stack:A notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible[R/OL].http://www.math.tau.ac.il/~amir1/, 2001.
[29]
E J Candes, D L Donoho.New tight frames of curvelets and optimal representations of objects with smooth singularities[R].USA:Department of Statistics,Stanford University,2002.
[30]
J L Starck, F Murtagh, E Candes, D L Donoho.Gray and color image contrast enhancement by the curvelet transform[J].IEEE Trans,2003,Image Processing-12(6):706-717.
[31]
E J Candès.Monoscale Ridgelets for the Representation of Images with Edges[R].USA:Department of Statistics, Stanford University, 1999.
[32]
E L Pennec, S Mallat.Image compression with geometrical wavelets[A].In Proc.of ICIP''2000[C].Vancouver, Canada, September,2000.661-664.
[33]
D L Donoho,M Vetterli,R A DeVore, I Daubechies.Data compression and harmonic analysis[J].IEEE Trans, 1998, Information Theory-44(6):2435-2476.
[34]
D L Donoho.Sparse component analysis and optimal atomic decomposition[J].Constructive Approximation, 1998,17:353-382.
[35]
D H Hubel, T N Wiesel.Receptive fields, binocular interaction and functional architecture in the cat''s visual cortex[J].Journal of Physiology, 1962,160:106-154.
[36]
B A Olshansen, D J Field.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381:607-609.
[37]
David L Donoho, Ana Georgina Flesia.Can recent innovations in harmonic analysis ‘explain'' key findings in natural image statistics[J].Network:Computation in Neural Systems, 2001,12(3):371-393.
[38]
S Carlsson.Sketch based coding of gray level images[J].IEEE Trans,1988, Image Processing-15(1):57-83.
[39]
J Elder.Are edges incomplete[J].International Journal of Computer Vision, 1999,34(2):97-122.
[40]
S Mallat, S S Zhong.Wavelet transform maxima and multiscale edges[A].B R, et al.Wavelets and Their Applications[M].Boston:Jones and Bartlett, 1992.
[41]
A Cohen, B Matei.Compact representation of images by edge adapted multiscale transforms[A].Proc IEEE Int Conf on Image Proc, Special Session on Image Processing and Non-Linear Approximation[C].Thessaloniki, Greece, invited paper, Oct.2001.
[42]
D L Donoho.Wedgelets:nearly-minimax estimation of edges[J].Ann Statist, 1999,27:859-897.
[43]
E Le Pennec, S Mallat.Sparse Geometric Image Representation with Bandelets[DB/OL].Submitted to IEEE Trans on Image Processing,http://www.cmap.polytechnique.fr/~mallat/papiers, 2003.
[44]
E J Candès.Harmonic analysis of neural networks[J].Applied and Computational Harmonic Analysis, 1999,6:197-218.
E J Candès, D L Donoho.Curvelets:a surprisingly effective nonadaptive representation for objects with edges[A].L L S, et al.Curves and Surfaces[M].Nashville:Vanderbilt University Press, 1999.
[47]
R H Bamberger, M J T Smith.A filter bank for the directional decomposition of images:Theory and design[J].IEEE Trans, 1992, Signal Proc-40(4):882-893.
[48]
M N Do, M Vetterli.Pyramidal directional filter banks and curvelets[A].Proc IEEE Int Conf on Image Proc[C].Thessaloniki, Greece,Oct.2001.
[49]
J Daugman.Two-dimensional spectral analysis of cortical receptive field profile[J].Vision Research, 1980,20:847-856.
[50]
A B Watson.The cortex transform:Rapid computation of simulated neural images[J].Computer Vision, Graphics, and Image Processing,1987,39(3):311-327.
[51]
J P Antoine, P Carrette, R Murenzi, B Piette.Image analysis with twodimensional continuous wavelet transform[J].Signal Processing, 1993,31:241-272.
[52]
N Kingsbury.Complex wavelets for shift invariant analysis and filtering of signals[J].Applied and Computational Harmonic Analysis, 2001,10(3):234-253.
[53]
Y Lu, M N Do.CRISP-Contourlet:A critically sampled directional multiresolution image representation[A].Proc SPIE Conf on Wavelets X[C].San Diego, Aug.2003.
[54]
Donoho D L, I M Johnstone.Empirical Atomic Decomposition[Z].Manuscript, http://www-stat.stanford.edu/~donoho/reports.html,1995.
[55]
Donoho D L.Wedgelets:nearly minimax estimation of edges[J].Ann.Statist, 1999,27:859-897.
[56]
J L Starck, E J Candès, D L Donoho.The curvelet transform for image denoising[J].IEEE Trans, 2002, Image Processing-11(6):670-684.
[57]
E J Candès, D L Donoho.Recovering edges in ill-posed inverse problems:Optimality of curvelet frames[R].USA:Department of Statistics,Stanford University, 2000.
[58]
J L Starck, E Candes, D L Donoho.Astronomical image representation by the curvelet transform[J].Astronomy and Astrophysics, 2003,398:785-800.