全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2003 

可行方向算法与模拟退火结合的NMF特征提取方法

, PP. 2190-2193

Keywords: 子空间特征提取,NMF,可行下降方向算法,模拟退火,人脸重建

Full-Text   Cite this paper   Add to My Lib

Abstract:

NMF子空间特征提取被表示成一个大规模线性约束非线性优化问题.为了获得更优性能的基图像,设计了一个可行方向算法结合模拟退火算法的混合算法来求解这个优化问题.以基于梯度的可行方向算法作为局部寻优的手段,加快收敛速度;以模拟退火算法作为全局寻优的手段,避免优化过程陷入局部极小点.同时,在模拟退火操作中,采用对比度增强算法,使获得的基图像更加地空间局部化.实验表明,本文的可行方向算法比采用归一化实现等式约束的原算法在学习的最后阶段有更好的收敛速度,所获得的基图像更加地空间局部化,而且在人脸重建的应用中有更好的性能.

References

[1]  Belhumeur P N, Hespanha J P, Kriegman D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Trans PAMI 1997,19(7):711-720.
[2]  Moghaddam B.Principal manifolds and probabilistic subspaces for visual recognition[J].IEEE Trans PAMI, 2002,24(6):780-788.
[3]  Guillamet D, Vitria J.Evaluation of distance metrics for recognition based on nonnegative matrix factorization[J].Pattern Recognition Letters,2003,24(9,10):1599-1605.
[4]  Bazarra M S, Sherali H D, Shetty C M.Nonlinear Programming[M].John Wiley & Sons Inc.1993.
[5]  边肇祺,张学工,等.模式识别[M].北京:清华大学出版社,2000.
[6]  Hyvarinen A, Oja E.Independent component analysis:algorithms and applications[J].Neural Networks, 2000,13(4,5):411-430.
[7]  Bartlett M S, Movellan J R, Sejnowski T J.Face recognition by independent component analysis[J].IEEE Trans Neural Networks, 2002,13(6):1450-1464.
[8]  Li S Z, Hou X W, Zhang H J, Cheng Q S.Learning spatially localized,parts-based representation[A].Proceedings of the 2001 IEEE Computer Society Conference on CVPR[C].IEEE, 2001.207-212.
[9]  Lee D D, Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature, 1999,401(10):788-791.
[10]  Lee D D, Seung H S.Algorithms for non-negative matrix factorization[A].Advances in Neural Information Processing[C].MIT Press, 2001.556-562.
[11]  Castleman K R.Digital Image Processing[M].Prentice-Hall Inc.1996.
[12]  Phillips P J, Wechsler H, Huang J, Rauss P.The FERET database and evaluation procedure for face recognition algorithms[J].Image and Vision Computing, 1998,16(5):295-297.
[13]  Martinez A M, Benavente R.The AR Face Database[R].CVC Technical Report #24,6,1998.
[14]  Feng T, Li S Z, Shum H Y, Zhang H J.Local non-negative matrix factorization as a visual representation[A].Proceedings of the 2nd International Conference on Development and Learning[C].IEEE, 2002.178-183.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133