全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2006 

基于微粒群算法和支持向量机的特征子集选择方法

, PP. 496-498

Keywords: 微粒群算法,支持向量机,特征子集选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

在模式分类系统中,大量无关或冗余的特征往往会降低分类器的性能,因此需要特征选择.本文提出了基于离散微粒群(BPSO)和支持向量机(SVM)封装模式的特征子集选择方法,首先随机产生若干种群(特征子集),然后用BPSO算法对特征进行优化,并用SVM的10阶交叉验证结果指导算法的搜索,最后选出最佳适应度的子集对SVM进行训练.两个UCI机器数据集(户外图像和电离层)的实验结果表明了提出算法的有效性.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133