基于混合高斯模型的电子邮件多过滤器融合方法
, PP. 247-251
Keywords: 代价敏感,邮件过滤,混合高斯模型,过滤器融合
Abstract:
本文提出了一种基于混合高斯模型(GMM)的多贝叶斯过滤器融合方法,并成功应用于电子邮件过滤.该方法使用多元统计分析方法对多个过滤器在训练例上的过滤表现矩阵进行降维和除噪,得到训练数据及各过滤器的分布;然后,从这一分布中学习出对邮件进行类别判定的GMM.GMM根据期望代价最小准则进行过滤,避免将正常邮件判定为垃圾.实验结果表明,本文方法具有较好的过滤性能,且对于特征提取率的敏感度低.
Full-Text