全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analyses of the OSU-MASLWR Experimental Test Facility

DOI: 10.1155/2012/528241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU) has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR) design, a small modular pressurized water reactor (PWR), relying on natural circulation during both steady-state and transient operation. The target of this paper is to give a review of the main characteristics of the experimental facility, to analyse the main phenomena characterizing the tests already performed, the potential transients that could be investigated in the facility, and to describe the current IAEA International Collaborative Standard Problem that is being hosted at OSU and the experimental data will be collected at the OSU-MASLWR test facility. A summary of the best estimate thermal hydraulic system code analyses, already performed, to analyze the codes capability in predicting the phenomena typical of the MASLWR prototype, thermal hydraulically characterized in the OSU-MASLWR facility, is presented as well. 1. Introduction Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community, taking into account the operational experience of the nuclear reactors, starts the development of new advanced reactor designs. Some of the new nuclear reactor designs use passive safety systems based on the use of the natural circulation for the cooling of the core during the designed operational condition and for the removing of the residual heat during transient conditions [1–5]. Emergency systems based on natural circulation are considered, for example, in the AP600/1000 design, WWER-1000/V-392 and WWER-640/V-407 designs, AC-600 design, SMART design, IRIS design, SWR 1000 MWe design, and in the ESBWR design [4–7]. Examples of reactors that rely on natural circulation for the removing of the core power during normal operation are the MASLWR, the ESBWR, the SMART, and the CAREM design [5–7]. The MASLWR integral reactor concept [1, 2, 8–13], developed by Idaho National Engineering and Environmental Laboratory, OSU, and NEXANT—Bechtel, Figure 1, is a small modular PWR relying on natural circulation during both steady-state and transient operation, which includes an integrated steam generator (SG) consisting of banks of vertical helical tubes contained

References

[1]  F. Mascari, G. Vella, B. G. Woods, and F. D'Auria, “Analysis of the Multi-Application Small Light-Water Reactor (MASLWR) design natural circulation phenomena,” in Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP '11), Nice, France, May 2011.
[2]  F. Mascari, G. Vella, and B. G. Woods, “TRACE code analyses for the IAEA ICSP on integral PWR design natural circulation flow stability and thermo-hydraulic coupling of containment and primary system during accidents,” in Proceedings of the ASME Small Modular Reactors Symposium (SMR '11), Washington, DC, USA, September 2011.
[3]  J. Cleveland, “Overview of Global Developments of Advanced Nuclear Power Plants,” Annex 1, Natural Circulation In Water Cooled Nuclear Power Plants Phenomena, Models, And Methodology For System Reliability Assessments, IAEA TECDOC 1474, November 2005.
[4]  IAEA-TECDOC-1281, “Natural Circulation Data and Methods for Advanced Water Cooled Nuclear Power Plant Design,” April 2000.
[5]  IAEA TECDOD-1474, “Natural Circulation in Water Cooled Nuclear Power Plants,” November 2005.
[6]  IAEA-TECDOC-1391, “Status of Advanced Light Water Reactor Designs 2004,” May 2004.
[7]  F. Mascari, G. Vella, P. Buffa, A. Compagno, and E. Tomarchio, “Passive safety systems in view of sustainable development,” Final Report on the Round Tables, Erasmus Intensive Programme Project (IP) ICARO Intensive Course on Accelerator and Reactor Operation, Sicilia, Italia.
[8]  S. M. Modro, J. E. Fisher, K. D. Weaver, et al., “Multi-Application Small Light Water Reactor Final Report. DOE Nuclear Energy Research Initiative Final Report,” Idaho National Engineering and Environmental Laboratory, December 2003.
[9]  J. N. Reyes Jr. and J. King, “Scaling Analysis for the OSU Integral System Test Facility,” Department of Nuclear Engineering Oregon State University 116 Radiation Center Corvallis, OR 97331-5902 NERI Project 99-0129, Prepared For U.S. Department of Energy.
[10]  J. N. Reyes Jr., “Integral System Experiment Scaling Methodology,” Annex 11, Natural Circulation In Water Cooled Nuclear Power Plants Phenomena, Models, And Methodology For System Reliability Assessments, IAEA TECDOC 1474, November 2005.
[11]  J. N. Reyes Jr., J. Groome, B. G. Woods et al., “Testing of the multi-application small light water reactor (MASLWR) passive safety systems,” Nuclear Engineering and Design, vol. 237, no. 18, pp. 1999–2005, 2007.
[12]  M. R. Galvin, “OSU MASLWR Test Facility Modification Description Report,” IAEA Contract Number USA-13386, Oregon State University, November, 2007.
[13]  F. Mascari, G. Vella, B. G. Woods et al., “Sensitivity analysis of the MASLWR helical coil steam generator using TRACE,” Nuclear Engineering and Design, vol. 241, no. 4, pp. 1137–1144, 2011.
[14]  B. G. Woods and F. Mascari, “Plan for an IAEA International Collaborative Standard Problem on Integral PWR Design Natural Circulation Flow Stability and Thermo-Hydraulic Coupling of Containment and Primary System During Accidents,” Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, prepared for IAEA.
[15]  B. G. Woods, M. R. Galvin, and B. C. Jordan, “Problem Specification for the IAEA International Collaborative Standard Problem on Integral PWR Design Natural Circulation Flow Stability and Thermo-Hydraulic Coupling Of Containment and Primary System During Accident,” DRAFT.
[16]  J. H. Choi, Second Workshop of IAEA ICSP on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents, Presentation, Vienna, Austria, March 2011.
[17]  S. Levy, Two-Phase Flow in Complex Systems, Wiley-Interscience, New York, NY, USA, 1999.
[18]  “An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution,” NUREG/CR-5809.
[19]  N. Zuber, “Appendix D: Hierarchical, Two-Tiered Scaling Analysis,” An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution, U.S Nuclear Regulatory Commission, Washington, DC, USA, 20555, NUREG/CR-5809, November 1991.
[20]  A. Weiss, J. Bowser, M. Galvin, and B. Woods, OSU MASLWR drawings. 2010.
[21]  F. Mascari, G. Vella, B. G. Woods, M. Adorni, and F. D'Auria, “Analysis of the OSU-MASLWR natural circulation phenomena using TRACE code,” in Proceedings of the Technical Meeting on Application of Deterministic Best Estimate Safety Analysis, University of Pisa, Pisa, Italy, September 2009, IAEA, organized in cooperation with the OECD Nuclear Energy Agency and the European Commission.
[22]  F. Mascari, Natural circulation and phenomenology of boron dilution in the pressurzied water reactors (circolazione naturale e fenomenologie di boron dilution in reattori ad acqua in pressione), Ph.D. thesis, University of Palermo, 2010.
[23]  J. Pottorf, F. Mascari, B. G. Woods, et al., “TRACE, RELAP5 Mod 3.3 and RELAP5-3D code comparison of OSU-MASLWR-001 test,” in Proceedings of the American Nuclear Society Winter Meeting and Nuclear Technology Expo, vol. 101, Transactions of the American Nuclear Society, 2009.
[24]  B. G. Woods, “Analysis of RELAP5-3D Modeling Techniques for Natural Circulation Small Integral Light Water Reactors,” Department of Nuclear Engineering and Radiation Health Physics Oregon State University Prepared for NuScale, Inc., 2008.
[25]  F. Mascari and G. Vella, “IAEA International Collaborative Standard Problem on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents Double Blind Calculation Results,” Presentation, II Technical Meeting IAEA ICSP, March 2011.
[26]  F. Mascari and G. Vella, “IAEA international collaborative standard problem on integral PWR design natural circulation flow stability and thermo-hydraulic coupling of containment and primary system during accidents double blind calculation results,” Tech. Rep., Dipartimento dell’Energia, Università degli Studi di Palermo, Palermo, Italy, February 2011, Prepared for International Atomic Energy Agency.
[27]  F. Mascari, B. G. Woods, and M. Adorni, “Analysis, by TRACE Code, of natural circulation phenomena in the MASLWR-OSU-002 test,” in Proceedings of the International Conference Nuclear Energy for New Europe, Portoroz, Slovenia, September 2008.
[28]  F. Mascari, G. Vella, B. G. Woods, et al., “Sensitivity analysis of the MASLWR helical coil steam generator using TRACE,” in Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 2009.
[29]  NuScale’s Passive Safety Approach, Presentation, NuScale Power, Inc. April 2011, http://www.nuscalepower.com/ot-Nuclear-Power-Presentations.php.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133