A ROSA/LSTF experiment was conducted for OECD/NEA ROSA Project simulating a PWR loss-of-feedwater (LOFW) transient with specific assumptions of failure of scram that may cause natural circulation with high core power and total failure of high pressure injection system. Auxiliary feedwater (AFW) was provided to well observe the long-term high-power natural circulation. The core power curve was obtained from a RELAP5 code analysis of PWR LOFW transient without scram. The primary and steam generator (SG) secondary-side pressures were maintained, respectively, at around 16 and 8?MPa by cycle opening of pressurizer (PZR) power-operated relief valve and SG relief valves for a long time. Large-amplitude level oscillation occurred in SG U-tubes for a long time in a form of slow fill and dump while the two-phase natural circulation flow rate gradually decreased with some oscillation. RELAP5 post-test analyses were performed to well understand the observed phenomena by employing a fine-mesh multiple parallel flow channel representation of SG U-tubes with a Wallis counter-current flow limiting correlation at the inlet of U-tubes. The code, however, has remaining problems in proper predictions of the oscillative primary loop flow rate and SG U-tube liquid level as well as PZR liquid level. 1. Introduction High reliability of control rods results in relatively low risk for anticipated transient without scram (ATWS) of pressurized water reactor (PWR). Failure of scram during loss-of-feedwater (LOFW) transient, however, should lead to relatively high core power for a long time and significant thermal-hydraulic responses which may cause degradation in core cooling with gradual loss of primary coolant inventory. Such phenomena include high-power natural circulation with liquid entrainment in hot leg at the inlet of pressurizer (PZR) surge-line, and counter-current flow limiting (CCFL) at the PZR bottom that may hold a large amount of coolant in the PZR, as shown in Figure 1. In the transient following LOFW, power-operated relief valve (PORV) of PZR may continue cycle opening, resulting in loss of primary coolant inventory. The core cooling conditions would then be degraded especially after the natural circulation mode turns into reflux cooling. Figure 1: Thermal-hydraulic phenomena during LOFW transient without scram. A LOFW-induced ATWS experiment was conducted in the LOFT (Loss of Fluid Test) program in the USA and revealed that the primary pressure is kept below about 17.2?MPa by cycle opening of the PZR PORV and safety valve while the primary fluid temperature
References
[1]
C. L. Nalezny, “Summary of nuclear regulatory commission's LOFT program experiment,” Tech. Rep. NUREG/CR-3214, EGG-2248, 1983.
[2]
W. Ambrosini, F. D'Auria, and G. M. Galassi, “Lesson learned from the application to LOBI tests of CATHARE and RELAP5 codes,” in Proceedings of the 1st Meeting of the Nuclear Society of Slovenia, Bovec, Slovenia, 1992.
[3]
United States Nuclear Regulatory Commission, “Reactor safety study—an assessment of risks in U. S. commercial nuclear power plants,” Tech. Rep. WASH-1400 (NUREG-075/14), 1975.
[4]
The ROSA-V Group, “ROSA-V large scale test facility (LSTF) system description for the third and fourth simulated fuel assemblies,” JAERI-Tech 2003-037, Japan Atomic Energy Research Institute, Ibaraki, Japan, 2003.
[5]
Y. Kukita, Y. Anoda, and K. Tasaka, “Summary of ROSA-IV LSTF first-phase test program—integral simulation of PWR small-break LOCAs and transients,” Nuclear Engineering and Design, vol. 131, no. 1, pp. 101–111, 1991.
[6]
K. E. Carlson, “RELAP5/MOD3 code manual (draft),” Tech. Rep. NUREG/CR-5535, EGG-2596, 1990.
[7]
T. Takeda, H. Asaka, and H. Nakamura, “Analysis of the OECD/NEA ROSA project experiment simulating a PWR small break LOCA with high-power natural circulation,” Annals of Nuclear Energy, vol. 36, no. 3, pp. 386–392, 2009.
[8]
H. Nakamura, T. Watanabe, T. Takeda et al., “RELAP5/MOD3 code verification through PWR pressure vessel small break loca tests in OECD/NEA rosa project,” in Proceedings of the 16th International Conference on Nuclear Engineering (ICONE-16 '08), pp. 659–668, Orlando, Fla, USA, May 2008.
[9]
N. Zuber, “Problems in modeling small break LOCA,” USNRC Report NUREG-0724, 1980.
[10]
H. Kumamaru and K. Tasaka, “Recalculation of simulated post-scram core power decay curve for use in ROSA-IV/LSTF experiments on PWR small-break LOCAs and transients,” Tech. Rep. JAERI-M 90-142, Japan Atomic Energy Research Institute, Ibaraki, Japan, 1990.
[11]
ROSA Project Team, “Final integration report of OECD/NEA ROSA project,” JAEA-Research 2010-9002, Japan Atomic Energy Agency, Ibaraki, Japan, 2010.
[12]
Y. Kukita, H. Nakamura, K. Tasaka, and C. Chauliac, “Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility,” Nuclear Science and Engineering, vol. 99, no. 4, pp. 289–298, 1988.
[13]
H. Asaka, Y. Kukita, T. Yonomoto, Y. Koizumi, and K. Tasaka, “Results of 0.5% cold-leg small-break LOCA experiments at ROSA-IV/LSTF: effect of break orientation,” Experimental Thermal and Fluid Science, vol. 3, no. 6, pp. 588–596, 1990.
[14]
K. H. Ardron and R. A. Furness, “A study of the critical flow models used in reactor blowdown analysis,” Nuclear Engineering and Design, vol. 39, no. 2-3, pp. 257–266, 1976.
[15]
D. W. Sallet, “Thermal hydraulics of valves for nuclear applications,” Nuclear Science and Engineering, vol. 88, no. 3, pp. 220–244, 1984.
[16]
Susyadi and T. Yonomoto, “Analysis on non uniform flow in steam generator during steady state natural circulation cooling,” JAERI-Research 2005-011, Japan Atomic Energy Research Institute, Ibaraki, Japan, 2005.
[17]
G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill Book, New York, NY, USA, 1969.
[18]
T. Yonomoto, Y. Anoda, Y. Kukita, and Y. Peng, “CCFL characteristics of PWR steam generator U-tubes,” in Proceedings of the ANS International Topical Meeting on Safety of Thermal Reactors, American Nuclear Society, Portland, Ore, USA, 1991.