全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

利用纹理信息的图像分块自适应压缩感知

DOI: 10.3969/j.issn.0372-2112.2013.08.009, PP. 1506-1514

Keywords: 分块压缩感知,纹理信息,自适应采样,自适应阈值,滤波器

Full-Text   Cite this paper   Add to My Lib

Abstract:

与一维信号不同,二维图像有明显的纹理信息.本文分析了不同图像之间,以及同一图像不同子块之间,不同纹理引起的信息量差异,在分块压缩感知算法的基础上,提出了利用纹理信息的图像分块自适应压缩感知算法.自适应性体现在自适应采样和自适应收缩阈值两个方面.引入两种滤波器,分别形成了两种分块自适应压缩感知算法.采用自然和医学两类测试图像,验证了两种新算法的性能.实验结果表明,利用了纹理信息的分块自适应压缩感知算法,在重构图像的质量和视觉效果上,都有明显的优势.

References

[1]  Donoho D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
[2]  Eldar Y C,et al.Compressed Sensing:Theory and Applicatiolns[M].New York:Cambridge University Press,2012.1-544.
[3]  Candès E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.
[4]  Chen S S,et al.Atomic decomposition by basis pursuit[J].Society for Industrial and Applied Mathematics Review,2001,43(1):129-159.
[5]  Ji S,et al.Bayesian compressive sensing and projection optimization[A].Proceedings of the 24th International Conference Machine Learning[C].Corvallis,OR-USA,2007.377-384.
[6]  He L,Carin L.Exploiting structure in wavelet-based Bayesian compressive sensing[J].IEEE Transaction on Signal Processing,2009,57(9):3488-3497.
[7]  Pati Y C,et al.Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[A].Proceedings of the 27th Asilomar Conference on Signals,Systems and Computers[C].Los Alamitos,CA,IEEE Comput Soc Press,1993.40-44.
[8]  Donoho D L,et al.Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[J].IEEE Transaction on Information Theory,2012,58(2):1094-1121.
[9]  Gan L.Block compressed sensing of natural images[A].Proceedings of the 15th International Conference on Digital Signal Processing[C].Cardiff,UK,2007.403-406.
[10]  Sungkwang M,Fowler J E.Block compressed sensing of images using directional transforms[A].Proceedings of the 16th IEEE International Conference on Image Processing[C].Cairo,Egypt,2009.3021-3024.
[11]  Dabov K,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transaction on Image Processing,2007,16(8):2080-2095.
[12]  焦李成,等.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. JIAO Li-cheng,et al.Development and prospect of compressive sensing[J].Acta Electronica Sinica,2011,39(7):1651-1662.(in Chinese)
[13]  Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-120.
[14]  Figueiredo M A T,et al.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal on Selected Areas in Communications,2007,1(4):586-597.
[15]  Needell D,Tropp J A.CoSaMP:iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26(3):301-321.
[16]  Jeon B J,Kim J H.Performance evaluation of teeth image recognition system based on difference image entropy[A].Proceedings of the 3rd International Conference on Convergence and Hybrid Information Technology[C].Busan,South Korea,2008.967-972.
[17]  Baraniuk R G,et al.Model-based compressive sensing[J].IEEE Transaction on Information Theory,2010,56(4):1982-2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133