全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

最大局部加权均值差异嵌入

DOI: 10.3969/j.issn.0372-2112.2013.08.002, PP. 1462-1468

Keywords: 最大均值差异嵌入,最大局部均值差异,最大局部加权均值差异嵌入,特征提取,迁移学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

最大均值差异嵌入(MaximumMeanDiscrepancyEmbedding,MMDE)作为一种基于最大均值差异(MaximumMeanDiscrepancy,MMD)度量的特征提取方法被成功地运用.然而通过分析得知,该方法在处理原始输入空间上的特征提取问题时一定程度上缺乏适应性.因此本文在MMD准则的基础上,并结合已经被广泛研究和探讨的局部学习方法,提出一个新的评价度量:最大局部加权均值差异(MaximumLocalWeightedMeanDiscrepancy,MLMD),该度量反映源域和目标域分布差异时能充分考虑两个区域内在的局部结构,同时还能通过局部分布差异去反映全局分布差异.本文还在此度量的基础上提出一种能实现迁移学习任务并具有一定局部学习能力的特征提取方法:最大局部加权均值差异嵌入(MaximumLocalWeightedMeanDiscrepancyEmbedding,MWME).该方法不但能完成传统意义上的特征提取,同时还能完成在两个分布存在差异但相关的两个区域上实现领域适应学习,从而表明该特征提取方法具有较好的鲁棒性和适应性.实验证明MLMD准则和MWME方法具有上述优势.

References

[1]  Jolliffe I T.Principal Component Analysis[M].New York :Springer-Verlag,1986.
[2]  Fisher R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenics,1936,7(2):179-188.
[3]  He X F,Niyogi P.Locality preserving projections[C/OL].http://peples.cs.uchic ago.edu/xiaofei/LPP_NIPS03.pdf,2003.
[4]  Pan J L,Kwok J T,Yang Q.Transfer learning via dimensionality reduction[C/OL].http://www.aaai.org/Papers/AAAI/2008/AAAI08-108.pdf.
[5]  王雪松,潘杰,程玉虎.基于知识迁移的Ant-Q算法[J].电子学报,2011,39(10):2359-2365. Wang X S,Pan J,Cheng Y H.Ant-Q algorithm based knowledge transfer[J].Acta Electronica Sinica,2011,39(10):2359-2365.(in Chinese)
[6]  于重重,田蕊,谭励,涂序彦.非平衡样本分类的集成迁移学习算法[J].电子学报,2012,40(7):1358-1363. Yu C C,Tian H,Tan L,Tu X Y.Integrated transfer larning algorithmic for unbalance samples classification[J].Acta Electronica Sinica,2012,40(7):1358-1363.(in Chinese)
[7]  Zhao D L,Lin Z C,Xiao R,Tang X O.Linear Laplacian discrimination for feature extraction[C/OL].http://resear ch.microsoft.com/en-us/um/people/zhoulin/publications/2007-cvpr-lld.pdf.
[8]  Li J,Li X L,Tao D C.KPCA for semantic object extraction in images[J].Pattern Recognition,2008,41(10):3244-3250.
[9]  Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404.
[10]  Tao J W,Chung F L,Wang S T.On minimum distribution discrepancy support vector machine for domain adaptation[J].Pattern Recognition,2012,45(11):3962-3984.
[11]  边肇祺,张学工.模式识别[M].北京:清华大学出版社,2001. Bian Z Q,Zhang X G.Pattern Recognition[M].Beijing:TsingHua University Press,2001.(In Chinese)
[12]  Pan S J,Yang Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[13]  Borgwardt K M,Gretton A,Rasch M J,Kriegel H P,Sch?olkopf B,Smola A J.Integrating structured biological data by kernel maximum mean discrepancy[J].Bioinformatics,2006,22(14):49-57.
[14]  Christopher G.Atkeson,Andrew W.Moore,Stefan Schaal.Locally weighted learning[J].Artifical Intelligence Review,1997,11(1-5):11-73.
[15]  Wang Y Y,Chen S C,Zhou Z H.New semi-supervised classification method based on modified cluster assumption[J].IEEE Transcation Neural Network and Learning System,2012,23(5):689-702.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133