全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

弦二部图的概念格表示

DOI: 10.3969/j.issn.0372-2112.2013.07.022, PP. 1384-1388

Keywords: 知识推理,约简形式背景,概念格,弦二部图,边完美消除序列

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先讨论了二部图中双单纯边与概念格中概念之间的对应关系;其次研究了弦二部图和约简的形式背景的若干性质;最后将概念格中元素的消除理论应用于二部图的研究,给出了弦二部图的概念格刻画.结果表明,一个二部图是弦二部图当且仅当对应的概念格中有一个∨∧—不可约元的完美消除序列.

References

[1]  R Wille.Restructuring Lattice Theory:An Approach Based on Hierarchies of Concept[M].R Ivan Rival(ED.),Ordered Sets,Reidel,Dordecht.Boston,1982.445-470.
[2]  张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学,E辑2005,35(6):628-639. Zhang Wenxiu,Wei Ling,Qi Jianjun.Attribute reduction theory and approach to concept lattice[J].Science in China(Series E)2005,35(6):628-639.(in Chinese)
[3]  L Wei,J J Qi,W X Zhang.Attribute reduction theory of concept lattice based on decision formal contexts[J].Science in China Series F,2008,51(7):910-923.
[4]  J Amilhastre,M C Vilarem,P Janssen.Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs[J].Discrete Applied Mathematics,1998,86:125-144.
[5]  A Berry,R M McConnell,A Sigayret,J P Spinrad.Very fast instances for concept generation[J].LNCS,2006,3874:119-129.
[6]  A Brandstadt.Special Graph Classes-A Survey[M].Schrif- tenreihe des Fachbereichs Mathematik,Universitat Duisburg,1991.
[7]  B Ganter,R Wille.Formal Concept Analysis: Mathematical Foundations[M].Springer-Verlag,Berlin,1999.
[8]  L F Li,J K Zhang.Attribute reduction in fuzzy concept lattices based on the T implication[J].Knowledge-Based Systems,2010,23(6):497-503.
[9]  李立峰,张东晓.概念格在二值命题逻辑命题集约简中的应用[J].电子学报,2007,35(8):1538-1542. Li-Lifeng,Zhang-Dongxiao.The application of concept lattice theory in the reduction of the proposition set in two-valued propo sitional logic[J].Acta Electronica Sinica,2007,35(8):1538-1542.(in Chinese)
[10]  A Berry,A Sigayret.Representing a concept lattice by a graph[J].Discrete Applied Mathematics,2004,144(1-2):27-42.
[11]  A Berry,E SanJuanb,A Sigayret.Generalized domination in closure systems[J].Discrete Applied Mathematics,2006,154:1064-1084.
[12]  T Kloksap,D Kratsch.Computing a perfect edge without vertex elimination ordering of a chordal bipartite graph[J].Information Processing Letters,1995,55:11-16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133