全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

环F2+uF2+…+uk-1F2上常循环自对偶码

DOI: 10.3969/j.issn.0372-2112.2013.06.008, PP. 1088-1092

Keywords: 常循环码,对偶码,自正交码,分圆陪集

Full-Text   Cite this paper   Add to My Lib

Abstract:

最近,剩余类环上的常循环码及常循环自对偶码引起了编码学者的极大关注.本文首先利用一些相关的线性码,建立了一类特殊有限链环上长为N的常循环自对偶码的一般理论,利用其结果给出了该环上长为N的(1+uλ)-常循环自对偶码存在的充分条件,得到了该环上长为N的一些常循环自对偶码,并给出了其生成多项式.

References

[1]  S X Zhu,X S Kai.A class of constacyclic codes over Zpm[J].Finite Fields and Their Application,2010,16(4):243-254.
[2]  M C V Amarra,F R Nemenzo.On (1-u)-cyclic codes over Fpk+uFpk[J].Applied Mathematics Letter,2008,21(11):1129-1133.
[3]  T abualrub,I Siap.Constacyclic codes over F2+uF2[J].Journal of the Franklin Institute,2009,346(5):520-529.
[4]  X S Kai,S X Zhu,Ping Li.(1+λu)-Constacyclic codes over Fp/< uk >[J].Journal of the Franklin Institute,2010,347(5):751-762.
[5]  H Q Dinh.Constacyclic codes of length ps over Galois extension rings of Fpm+uFpm[J].Journal of Algebra,2010,324(5):940-950.
[6]  X S Kai,S X Zhu.On cyclic self-dual codes[J].Applicable Algebra in Engineering,Communication and Computing,2008,19(6):509-525.
[7]  Yan jia,San Ling,Chaoping Xing.On self-dual cyclic codes over finite fields[J].IEEE Trans Inform Theory,2011,57(4):2243-2251.
[8]  V S Pless,P Solé,Z Qian.Cyclic self-dual Z4-codes[J].Finite Fields and Their Application,1997,3(1):48-69.
[9]  施敏加,杨善林,朱士信.环F2+uF2+…+uk-1F2上长为2s的(1+u)-常循环码的距离分布[J].电子与信息学报,2010,32(1):112-116.
[10]  G H Norton,A S?l?gean.On the Hamming distance of linear codes over finite chain rings[J].IEEE Trans Inform Theory,2000,46(3):1060-1067.
[11]  J F Qian,L N zhang,S X Zhu.(1+u)-constacyclic and cyclic codes over F2+uF2[J].Applied Mathematics Letter,2006,19(8):820-823.
[12]  Shi Minjia,Zhu Shixin.Constacyclic codes over ring Fq+uFq+…+us-1Fq[J].中国科学技术大学学报,2009,39(6):583-587.
[13]  朱士信,李平,吴波.环Fq+uFq+…+uk-1Fq上一类重根常循环码[J].电子与信息学报,2008,30(6) :1394-1396.
[14]  H Q Dinh.Constacyclic codes of length 2s over Galois extension rings F2+uF2[J].IEEE Trans Inform Theory,2009,55(4):1730-1740.
[15]  B Heijne,J Top.On the minimal distance of binary self-dual cyclic codes[J].IEEE Trans Inform Theory,2009,55(11):4860-4863.
[16]  P Kanwar,S R López-permauth.Cyclic codes over the integers modulo pm[J].Finite Fields and Their Application,1997,3(4):334-352.
[17]  X S Kai,S X Zhu.Negacyclic self-dual codes over finite chain rings[J].Designs,Codes and Cryptography,2012,62(2):161-174.
[18]  施敏加,杨善林,朱士信.F2+uF2上长为2e的循环码的距离[J].电子学报,2011,39(1):29-34. Shi Min-jia,Yang Shan-lin,Zhu Shi-xin.On minimum distances of cyclic codes of length 2e over F2 +u F2[J].Acta Electronica Sinica,2011,39(1):29-34.(in Chinese)
[19]  G H Norton,A S?l?gean.On the structure of linear and cyclic codes over a finite chain ring[J].Applicable Algebra in Engineering,Communication and Computing,2000,10(6):489-506.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133