全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

基于P-B-P最优准则的网络检测算法

DOI: 10.3969/j.issn.0372-2112.2013.01.011, PP. 56-61

Keywords: 贝叶斯风险,集中式决策,近似分散式决策,消息传递算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以有向拓扑结构的传感器网络为背景,通过分析在全局贝叶斯风险最小准则下已建立的集中式和近似分散式两种决策方法各自优势与不足,并考虑到现有的队决策方法求解决策过程中存在着局限性,结合贝叶斯公式和相关图模型理论等,建立了在P-B-P最优准则下针对此类网络的新决策方法.该方法分为在线计算和离线计算两部分,前者主要任务是基于在线测量值获得类条件概率密度;后者主要任务是如何求取用于计算阈值所需的参数,参数的计算过程分别是由正序传递似然函数消息和逆序接收代价函数消息两部分组成.同时,还分析了新方法在调节集中式和近似分散式两种决策方法的计算量和能耗之间矛盾的能力,而其优点也通过计算机仿真结果进行了验证.

References

[1]  R Rander.Team decision problem[J].The Annals of Mathematical Statistics,1962,33(3):857-881.
[2]  O Patrick Kreidl,Alan S Willsky.An efficient massage passing algorithm for optimizing decentralized detection network [A].Proceedings of the 45th IEEE Conference on Decision and Control[C].Piscataway,N J:IEEE Control Systems Society,2010.563-578.
[3]  C Y Chong and S P Kumar.Sensor networks:Evolution,opportunities,and challenges[J].Proceedings of IEEE,2003,91(8):1247-1256.
[4]  R R Tennry,N R Sandell Jr.Detection with distributed sensors[J].IEEE Transactions on Aerospace and Electronic Systems,1981,17(4):689-692.
[5]  J Pearl.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Francisco:Morgan Kaufmann Publishers,inc,1988.277-306.
[6]  Dr.Dmitry Malioutov.Walk-sums and belief propagation in gaussian graphical models[J].Journal of Machine Learning Research,2006,7(10):2031-2064.
[7]  J N Tsitsiklis.Decentralized detection[J].Advances in Statistical Signal Processing,1993,2(4):297-344.
[8]  Z B Tang,K R Pattipati and D L Kleinman.An algorithm for determining the decision thresholds in a distributed detection problem[J].IEEE Transactions on Systems,Man and Cybernetics,1991,21(1):231-237.
[9]  A S Willsky.Multiresolution markov models for signal and image processing[J].Proceedings of IEEE,2002,90(8):1396-1458.
[10]  Martin J Wainwright,Michael I Jordan.Graphical models,exponential families,and variational inference[J].Foundations and Trends in Machine Learning,2008,1(1-2):37-74.
[11]  M I Jordan,et al.Learning in Graphical Models[M].Cambridge,Massachusetts:MIT Press,1999.105-161.
[12]  Miguel,Antonio,Ortega,Alfonso,Buera,Luis,Lleida,Eduardo.Graphical models for discrete hidden Markov models in speech recognition[A].Proceedings of the 10th Annual Conference of international Speech Communication Association[C].Brighton,U K:INTERSPEECH,2009.1411-1414.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133