全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

一种新的基于小波包分解的EEG特征抽取与识别方法研究

DOI: 10.3969/j.issn.0372-2112.2013.01.33, PP. 193-198

Keywords: 非平稳脑电信号,特征抽取,小波包分解,脑机接口

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高脑思维任务分类精度,提出一种新的脑电特征抽取与识别方法.首先进行小波包分解,然后结合能反映脑电信号在时域与频域上的能量分布特征的小波包熵概念,从小波包库中选择最优小波包基,对各个最优基所对应的小波系数求取统计特性,然后根据不同脑思维任务下左右半脑各导联间的差异性对各个导联对求取不对称率构成分类特征向量,最后利用SVM分类器对其进行分类.实验结果表明:相对于一般的小波包分解,最优小波包基和自回归特征抽取方法,该方法对5类不同脑思维任务的所有10种不同组合任务对的平均分类预测精度可以达到95.41%~99.65%.

References

[1]  徐宝国,宋爱国,费树岷.在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,38(5):1025-1030.Xu B G,Song A G,Fei S M.Feature extraction and classification of EEG in online brain-computer interface[J].Acta Electronica Sinica,2011,38(5):1025-1030.(in Chinese)
[2]  Yang B H,Yan G Z,Yan R G,Wu T.Feature extraction for EEG-based brain–computer interfaces by wavelet packet best basis decomposition[J].J Neural Eng,2006,3:251-256.
[3]  Xue J Z,Zhang H,Zheng C X,Yan X G.Wavelet packet transform for feature extraction of EEG during mental tasks[A].Proceedings of the 2nd International Conference on Machine Learning and Cybernetics[C].IEEE,2003.360-363.
[4]  Coifman R,Wickerhauser M V.Entropy-based algorithms for best-basis selection[J].IEEE Trans Inf Theory,1992,38:713-718.
[5]  孙宇舸,叶柠,徐心和.基于小波熵和距离的脑电信号特征提取与识别[A].中国控制与决策学术年会论文集[C].烟台,2008.4294-4298.Sun Y G,Ye N,Xu X H.The feature extraction and recognition of EEG based on wavelet entropy and distance[A].Prdeedings of Chinese Control and Decision Conference[C].Yantai,2008.4294-4298.(in Chinese)
[6]  Doyle J C,Ornstein R,Galin D.Lateral Specialization of cognitive mode:II.EEG frequency analysis[J].Psychophysiology,1974,11(6):567-578.
[7]  Keirn Z A,Aunon J I.A new mode of communication between man and his surrondings[J].IEEE Trans Biomed Eng,1990,37(12):1209-1214.
[8]  Colorado State University[DB/OL].http://www.cs.colostate.edu/eeg/eegSoftware.html.
[9]  Anderson C W,Sijercic Z.Classfication of EEG signals from four subjects during five mental tasks[A].Proceedings of the IEEE,EANN''96[C].London,1996.407-414
[10]  Huan N J,Palaniappan R.Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals[A].Proceedings of the 26th Annual International Conference of the IEEE EMBS[C].San Francisco,2004.507-510.
[11]  杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241.Yang L C,Li B M,Li G L,Jia L.A review of brain-computer interface technology[J].Acta Electronica Sinica,2005,33(7):1234-1241.(in Chinese)
[12]  Anderson C W,Stolz E A,Shamsunder S.Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[J].IEEE Trans Biomed Eng,1998,45(3):277-286.
[13]  杨帮华,颜国正,严荣国.脑机接口中基于小波包最优基的特征抽取[J].上海交通大学学报,2005,39(11):1879-1882.Yang B H,Yan G Z,Yan R G.The feature extraction in brain-computer interface based on best basis of wavelet packet[J].J Shanghai Jiaotong Univ,2005,39(11):1879-1882.(in Chinese)
[14]  李明爱,王蕊,郝冬梅.想象左右手运动的脑电特征提取及分类研究[J].中国生物医学工程学报,2009,28(2):166-170.Li M A,Wang R,Hao D M.Feature extraction and classification of EEG for imagery left-right hands movement[J].Chin J Biomed Eng,2009,28(2):166-170.(in Chinese)
[15]  Yildiz A,Akin M,Poyraz M,Kirbas G.Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction[J].Expert Syst Appl,2009,36(4):7390-7399.
[16]  Wang D,Miao D Q,Xie C.Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection[J].Expert Syst Appl,2011,38(11):14314-14320.
[17]  Wu T,Yang G Z,Yang B H,Sun H.EEG feature extraction based on wavelet packet decomposition for brain computer interface[J].Measurement,2008,41(6):618-625.
[18]  任亚莉.基于小波包熵的运动意识任务分类研究[J].生物物理学报,2008,24(3):227-231.Ren Y L.Study on classification of imaginary hand movements based on wavelet packtet entropy[J].Acta Biophysica Sinica,2008,24(3):227-231.(in Chinese)
[19]  孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.Sun Y K.Wavelet Analysis and Application[M].Beijing:China Machine Press,2005.(in Chinese)
[20]  Ehrlichman H,Wiener M S.EEG asymmetry during covert mental activity[J].Psychophysiology,1980,17(3):228-235.
[21]  Cortes C,Vapnik V.Support-vector network[J].Machine Learning,1995,20:273-297.
[22]  Nakayama K,Inagaki K.A brain computer interface based on neural network with efficient pre-processing[A].Proceedings of the IEEE,ISPACS2006[C].Yonago,2006.673-676.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133