全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

优化样本分布的最接近支持向量机

DOI: 10.3969/j.issn.0372-2112.2014.12.014, PP. 2429-2434

Keywords: 最接近支持向量机,优化样本分布,正则化技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

当两类样本分布存在差异时,最接近支持向量机(ProximalSupportVectorMachine,PSVM)等最小二乘类分类器分类结果将出现偏差,不能实现最小错误率分类.本文在分析PSVM等价广义特征值分解模型基础上,提出了一种改善原PSVM分类决策面的优化样本分布PSVM,其基本思想是通过引入最大化正确分类样本距决策面距离,同时最小化错误分类样本距决策面距离的优化样本分布正则化项,构造优化样本分布PSVM的广义特征值分解模型.通过人工数据集和UCI数据集的10个数据子集上的对比实验,验证了该改进分类模型能够有效调整决策边界,从而获得更好的分类效果.

References

[1]  Suykens J A K,Vandewalle J.Least square support vector machine classifier[J].Neural Processing Letters,1999,9(3):293-300.
[2]  杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. Yang Xubing,Chen Songcan.Proximal support vector machine based on prototypal multiclassification hyperplanes[J].Journal of Computer Research and Development,2006,43(10):1700-1705.(in Chinese)
[3]  Niu Lingfeng.Parallel algorithm for training multiclass proximal Support Vector Machines[J].Applied Mathematics and Computation,2011,217(12):5328-5337.
[4]  Jayadeva K R,Chandra S.Fuzzy linear proximal support vector machines for multi-category data classification[J].Neurocomputing,2005,67(8):426-435.
[5]  Yang Xubing,Chen Songcan,Chen Bin,et al.Proximal support vector machine using local information[J].Neurocomputing,2009,73(1-3):357-365.
[6]  Reshma K,Anuj K,Suresh C.Generalized eigenvalue proximal support vector regressor[J].Expert Systems with Applications,2011,38(10):13136-13142.
[7]  Sugumaran V,Muralidharan V,Ramachandran K I.Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing[J].Mechanical Systems and Signal Processing,2007,21(2):930-942.
[8]  Saravanan N,Kumar V N S,Ramachandran K I.Fault diagnosis of spur bevel gear box using artificial neural network (ANN),and proximal support vector machine (PSVM)[J].Applied Soft Computing,2010,10(1):344-360.
[9]  Duda R O,Hart P E,Stork D G.Pattern Classification[M].Second Edition.New York:Wiley-Interscience,2000.239-245.
[10]  Schlkopf B,Mika S,et al.Input space versus feature space in kernel based methods[J].IEEE Transactions on Neural Networks,1999,10(5):1000-1017.
[11]  Mangasarian O L,Wild E W.Multisurface proximal support vector machine classification via generalized eigenvalues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):69-74.
[12]  王国胜,钟义信.支持向量机的若干新进展[J].电子学报,2001,29(10):1397-1400. Wang Guosheng,Zhong yixin.Somenew developments on support vector machine[J].Acta Electronica Sinica,2001,29(10):1397-1400.(in Chinese)
[13]  方景龙,陈铄,潘志庚,梁荣华.复杂分类问题支持向量机的简化[J].电子学报,2007,35(5):858-861. FANG Jinglong,CHEN Shuo,PAN Zhigeng,LIANG Ronghua.Simplification to support vector machine for complicated recognition problem[J].Acta Electronica Sinica,2007,35(5):858-861.(in Chinese)
[14]  Reshma K,Jayadeva,Suresh C.Knowledge based proximal support vector machines[J].European Journal of Operational Research,2009,195(3):914-923.
[15]  Murphy P M,Aha D W.UCI machine learningrepository[OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,1992.
[16]  Fung G,Mangasarian O L.Proximal support vector machine classifier[A].Proc of the 7th ACM SIGKDD International Coference on Knowledeg Discovery and Data Mining[C].San Francisco:ACM,2001.77-82.
[17]  Vapnik V N.The Nature of Statistical Learning Theory[M].Second Edition.New York:Springer Press,2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133