全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于弱监督学习的去噪受限玻尔兹曼机特征提取算法

DOI: 10.3969/j.issn.0372-2112.2014.12.005, PP. 2365-2370

Keywords: 特征提取,受限玻尔兹曼机,目标识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有特征提取方法难以实现从含有复杂背景的图像中提取有用目标特征的瓶颈问题,提出了基于弱监督学习的去噪受限玻尔兹曼机特征提取算法.首先,利用训练样本,通过无监督学习方式训练一个标准受限玻尔兹曼机模型,从而获得一个包含可视单元层和隐藏单元层的层次结构模型;然后,对可视层的每个单元引入二值转换单元,对隐藏层,根据各节点的激活值大小和激活频率将其分为两组:前景特征隐层单元和背景特征隐层单元,得到一个二元混合式去噪玻尔兹曼机的模型;最后,通过多模交互方式,利用有限数量的样本标签信息对输入样本逐像素地进行采样训练,以此来提取目标特征.实验表明,本文的特征提取算法能够有效地从复杂的干扰背景中提取目标特征,提高了目标识别精度.

References

[1]  Le QV,et al.Building high-level features using large scale unsupervised learning[A].Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing[C].USA:IEEE,2013.8595-8598.
[2]  H Goh,et al.Unsupervised and supervised visual codes with restricted Boltzmann machines[A].Proceedings of European Conference on Computer Vision[C].Heidelberg Berlin:Springer,2012.298-311.
[3]  R Mittelman,et al.Weakly supervised learning of mid-level features with beta-Bernoulli process restricted Boltzmann machines[A].Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2013.476-483.
[4]  M Ranzato,et al.On deep generative models with applications to recognition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2011.2857-2864.
[5]  H Lee,et al.Unsupervised learning of hierarchical representations with convolutional deep belief networks[J].Communications of the ACM,2011,54(10):95-103.
[6]  Mohamed,et al.Acoustic modeling using deep belief networks[J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(1):14-22.
[7]  G E Hinton.Training products of experts by minimizing contrastive divergence[J].Neural computation,2002,14(8):1771-1800.
[8]  M Welling,et al.Exponential family harmoniums with an application to information retrieval[A].Advances in Neural Information Processing Systems[C].Cambridge:MIT Press,2004.1481-1488.
[9]  Sinha N K,Griscik M P.A stochastic approximation method[J].IEEE Transactions on Systems,Man and Cybernetics,1971,4:338-344.
[10]  L Younes.On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates[J].Stochastics:An International Journal of Probability and Stochastic Processes,1999,65(3-4):177-228.
[11]  A Yuille.The convergence of contrastive divergences[J].Convergence,2006,3:4.
[12]  A Fischer,C Igel.Bounding the bias of contrastive divergence learning[J].Neural Computation,2011,23(3):664-673.
[13]  Dumitru Erhan.Variations on the MNIST digits[DB/OL].http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations,2012-10-23.
[14]  V Nair,G E Hinton.Implicit mixtures of restricted Boltzmann machines[A].Advances in Neural Information Processing Systems[C].Cambridge:MIT Press,2008.1145-1152.
[15]  H Larochelle,Y Bengio.Classification using discriminative restricted Boltzmann machines[A].Proceedings of International Conference on Machine Learning[C].New York:ACM,2008.536-543.
[16]  K Sohn,et al.Learning and selecting features jointly with point-wise gated Boltzmann machines[A].Proceedings of International Conference on Machine Learning[C].New York:ACM,2013.217-225.
[17]  P Vincent,et al.Extracting and composing robust features with denoising autoencoders[A].Proceedings of International Conference on Machine Learning[C].New York:ACM,2008.1096-1103.
[18]  S Rifai,et al.Contractive auto-encoders:Explicit invariance during feature extraction[A].Proceedings of International Conference on Machine Learning[C].New York:ACM,2011.833-840.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133