全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于正交搜索的粒子群优化测试用例生成方法

DOI: 10.3969/j.issn.0372-2112.2014.12.002, PP. 2345-2351

Keywords: 测试用例生成,粒子群优化算法,局部搜索,奇异值分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对粒子群优化算法易出现早熟收敛的问题,本文提出一种基于正交搜索的粒子群优化测试用例生成方法.首先,利用奇异值分解来预测种群的进化方向,在其正交方向进行搜索,可避免已搜索过的区域,有助于跳出局部最优;然后,对粒子速度项进行改进,使其与正交方向保持一致,保证种群可持续受到正交方向的影响,有利于减少奇异值分解次数,降低时间消耗;最后,对每代最优个体进行局部搜索,以增强算法局部搜索能力.实验证明,本文方法在覆盖率、运行时间、进化代数等指标上均有优势.

References

[1]  Bertolino A.Software testing research:Achievements,challenges,dreams[A].Future of Software Engineering (FOSE ''07)[C].Minneapolis:IEEE,2007.85-103.
[2]  Harman M,Kim S G,Lakhotia K,et al.Optimizing for the number of tests generated in search based test data generation with an application to the oracle cost problem[A].Proceedings of the Third IEEE International Conference on Software Testing Verification and Validation -Workshops (ICSTW 2010)[C].Paris:IEEE,2010.182-191.
[3]  Nie P.A PSO Test case generation algorithm with enhanced exploration ability[J].Journal of Computational Information Systems,2012,8(14):5785-5793.
[4]  Zhu X M,Yang X F.Software test data generation automatically based on improved adaptive particle swarm optimizer[A].Proceedings 2010 International Conference on Computational and Information Sciences[C].Chengdu:IEEE,2010.1300-1303.
[5]  史娇娇,姜淑娟,韩寒,王令赛.自适应粒子群优化算法及其在测试数据生成中的应用研究[J].电子学报,2013,41(8):1555-1559. Shi Jiaojiao,Jiang Shujuan,Han Han,Wang Lingsai.Adaptive particle swarm optimization algorithm and its application in test data generation[J].Acta Electronica Sinica,2013,41(8):1555-1559.(in Chinese)
[6]  De Lucia A,Di Penta M,Oliveto R,et al.Estimating the evolution direction of populations to improve genetic algorithms[A].Proceedings of the 14th International Conference on Genetic and Evolutionary Computation[C].Philadelphia:ACM,2012.617-624.
[7]  Kifetew M F,Panichella A,De Lucia A,et al.Orthogonal exploration of the search space in evolutionary test case generation[A].Proceedings of the 2013 International Symposium on Software Testing and Analysis[C].Lugano:ACM,2013.257-267.
[8]  Kempka J,McMinn P,Sudholt D.A theoretical runtime and empirical analysis of different alternating variable searches for search-based testing[A].Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation Conference[C].Amsterdam:ACM,2013.1445-1452.
[9]  Xiao M,El-Attar M,Reformat M,et al.Empirical evaluation of optimization algorithms when used in goal-oriented automated test data generation techniques[J].Empirical Software Engineering,2007,12(2):183-239.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133