全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于混沌鲶鱼效应的人工蜂群算法及应用

DOI: 10.3969/j.issn.0372-2112.2014.9.011, PP. 1731-1737

Keywords: 人工蜂群算法,混沌理论,鲶鱼效应,支持向量机,行为识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前人工蜂群算法的早熟收敛、陷入局部极值等问题,提出一种基于混沌鲶鱼效应的改进人工蜂群算法.首先,采用随机性更高的混沌序列初始化蜂群以扩大其遍布范围;其次,集成了鲶鱼效应和混沌理论提出了混沌鲶鱼蜂,并引入了它与跌入局部极值的蜂群之间的有效竞争协调机制,从而增进蜜蜂群体跳出局部最优解、加速收敛的能力.支持向量机的学习能力主要取决于其惩罚因子C和核函数参数的合理选择,对其参数的优化可以提升其学习效果,然而现行算法均存在一定局限性.基于我们提出的改进人工蜂群算法,对支持向量机的参数进行了优化.最后,在UCI(加州大学欧文分校)数据集和行为识别真实数据集上进行了测试,验证基于改进人工蜂群算法的支持向量机具有更强的分类性能.

References

[1]  Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri:Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[2]  高卫峰, 刘三阳, 黄玲玲.受启发的人工蜂群算法在全局优化问题中的应用[J].电子学报, 2012, 40(12):2398-2403. Gao Wei-feng, Liu San-yang, Huang Ling-ling.Inspired artificial bee colony algorithm for global optimization problems[J].Acta Electronica Sinica, 2012, 40(12):2398-2403.(in Chinese)
[3]  张银雪, 田学民, 邓晓刚.基于改进人工蜂群算法的盲源分离方法[J].电子学报, 2012, 40(10):2026-2030. Zhang Yinxue, Tian Xuemin, Deng Xiaogang.Blind source separation based on modified artificial bee colony algorithm[J].Acta Electronica Sinica, 2012, 40(10):2026-2030.(in Chinese)
[4]  Xie Chunli, Shao Cheng, Zhao Dandan.Parameters optimization of least squares support vector machines and its application[J].Journal of Computers, 2011, 6(9):1935-1941.
[5]  Yu Jieyue, Lin Jian.The ink preset algorithm based on the model optimized by chaotic bee colony[A].Proceedings of the 5th International Congress on Image and Signal Processing.[C].America:IEEE Computer Society, 2012.547-551.
[6]  李志勇, 李玲玲, 等.基于Memetic框架的混沌人工蜂群算法[J].计算机应用研究, 2012, 29(11):4045-4049. Li Zhi-yong, Li Ling-ling, et al.Chaos artificial bee colony based on Memetic framework[J].Application research of Computers, 2012, 29(11):4045-4049.(in Chinese)
[7]  Zhang Likang.An analysis of common search in Chinese of Google the meta library[J].Data Science Journal, 2007, 6(Supplement):813-823.
[8]  Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Science Business Media, 2000.10-60.
[9]  Keerthi S S, Lin C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation, 2003, 15(7):1667-1689.
[10]  Friedrichs F, Igel C.Evolutionary tuning of multiple SVM parameters[J].Neurocomputing, 2005, 64(Special):107-117.
[11]  Zhao Mingyuan, Fu Chong, et al.Feature selection and parameter optimization for support vector machines:A new approach based on genetic algorithm with feature chromosomes[J].Expert Systems with Applications, 2011, 38(5):5197-5204.
[12]  Alwan H B, Ku-Mahamud K R.Solving support vector machine model selection problem using continuous ant colony optimization[J].International Journal of Information Processing and Management, 2013, 4(2):86-97.
[13]  Lin S W, Ying K C, et al.Particle swarm optimization for parameter determination and feature selection of support vector machines[J].Expert Systems with Applications, 2008, 35(4):1817-1824.
[14]  刘路, 王太勇.基于人工蜂群算法的支持向量机优化[J].天津大学报, 2011, 44(9):803-809. Liu Lu, Wang Taiyong.Support vector machine optimization based on artificial bee colony algorithm[J].Journal of Tianjin University, 2011, 44(9):803-809.(in Chinese)
[15]  Schuster H G, Wolfram J.Deterministic Chaos:An Introduction[M].Weinheim:WILEY-VCH Verlag GmbH & Co.KGaA, 2005.19-68.
[16]  Chuang L Y, Tsai S W, Yang C H.Fuzzy adaptive catfish particle swarm optimization[J].Artificial Intelligence Research, 2012, 1(2):149-170.
[17]  Muller K, Mike S, et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks, 2001, 12(2):181-201.
[18]  Chang C C, Lin C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27:1——27:27.
[19]  Davide A, Alessandro G, et al.Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine[A].International Workshop of Ambient Assisted Living[C].Berlin Heidelberg:Springer Verlag, 2012.216-223.
[20]  Hamm J, Stone B, et al.Automatic Annotation of Daily Activity from Smartphone-Based Multisensory Streams[M].Berlin Heidelberg:Springer Verlag, 2013.328-342.
[21]  Pekka S, Juha R.Recognizing human activities user-independently on smartphones based on accelerometer data[J].International Journal of Artificial Intelligence and Interactive Multimedia, 2012, 1(5):38-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133