全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

衍射层析成像的Voronoi图密度补偿算法的研究

DOI: 10.3969/j.issn.0372-2112.2014.07.004, PP. 1268-1272

Keywords: 密度补偿,衍射层析成像,非均匀傅里叶变换,Voronoi图

Full-Text   Cite this paper   Add to My Lib

Abstract:

网格算法是最常见的衍射层析成像的频域重建算法,然而这种算法却容易引入误差,且对采样点的分布形状较敏感,因此,本文提出了一种基于Voronoi图密度补偿的超声衍射层析成像重建算法.首先,用三角剖分快速生成算法生成投影数据的Voronoi图,并对在外凸壳上对应的Voronoi图面积是无穷大的点通过拟合、插值处理使之变为有限的补偿面积,从而得到整个点集的补偿面积.其次,提出了基于Voronoi图面积密度补偿的衍射层析成像的非均匀傅里叶变换网格重建算法,重建图像的质量较没有补偿的有很大提高.最后,提出了选取1/4圆弧的数据集重建方案,实验结果表明:在重建质量相当的情况下,1/4圆弧的重建时间比1/2圆弧少27.32%.

References

[1]  Arfanakis K,Tamhane A A,Pipe J G,et al.k-space under sampling in PROPELLER imaging [J].Magnetic Resonance in Medicine,2005,53(3):675-683.
[2]  冯衍秋,陈武凡,颜刚等.磁共振成像PROPELLER数据网格化中的采样密度补偿新算法[J].电子学报,2007,35(4):766-768. Feng yanqiu,Chen wufan,Yan Gang,et al.A new algorithm for sampling density compensation in the gridding of PROPELLER MRI data [J].Acta Electronica Sinica,2007,35(4):766-768.(in Chinese)
[3]  周荷琴,谭裴,侯成功.基于Voronoi图的磁共振PROPELLER数据网格化算法[J].中国科学技术大学学报,2008,38(7):783-786. Zhou heqin,Tan pei,Hou Chenggong.A Voronoi diagram-based algorithm for the gridding of PROPELLER MRI data [J].Journal of University of Science and Technology of China,2008,38(7):783-786.(in Chinese)
[4]  陶丹,孙岩,陈后金.视频传感器网络中最坏情况覆盖检测与修补算法[J].电子学报,2009,37(10):2284-2289. Tao dan,Sun Yan,Chen Houjin.Worst-case coverage detection and repair algorithm for video sensor networks [J].Acta Electronica Sinica,2009,37(10):2284-2289.(in Chinese)
[5]  杜群贵,邓达华.基于Delaunay 剖分有限元网格节点和单元一体化生成方法[J].计算机辅助设计与图形学学报,1997,9(1):60-65. Du qungui,Deng dahua.Concurrent generation of nodes and elements for finite element meshes by Delaunay method [J].Journal of Computer-Aided Design & Computer Graphics,1997,9(1):60-65.(in Chinese)
[6]  Du Q,Wang D S.Recent progress in robust and quality Delaunay mesh generation [J].Journal of Computational and Applied Mathematics,2006,195(1/2):8-23.
[7]  骆冠勇,曹洪.一种网格和节点同步生成的二维Delaunay网格划分算法[J].计算机辅助设计与图形学学报,2007,19(5):605-608,615. Luo Guanyong,Cao Hong.An algorithm for constructing 2D Delaunay adaptive mesh with simultaneous generation of nodes and elements [J].Journal of Computer-Aided Design & Computer Graphics,2007,19(5):605-608,615.(in Chinese)
[8]  Sarty G E,Bennett R,Cox R W.Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform [J].Magnetic Resonance in Medicine,2001,45(5):908-915.
[9]  Fessler J A.On NUFFT-based gridding for non-Cartesian MRI [J].Journal of Magnetic Resonance,2007,188(1):191-195.
[10]  Jung Kuk Kim,J A Fessler,Zhengya Zhang.Forward-projection architecture for fast iterative image reconstruction in X-ray CT [J].IEEE Transactions on Signal Processing,2012,60(10):5508-5518.
[11]  方杰,韦穗,霍修坤.超声衍射层析成像的高精度核卷积插值重建算法[J].西安交通大学学报,2009,43(10):94-98. Fang jie,Wei sui,Huo xiu kun.An accurate reconstruction algorithm in diffraction ultrasound tomography using kernel convolution interpolation [J].Journal of Xi''an Jiao Tong University,2009,43(10):94-98.(in Chinese)
[12]  方杰,韦穗,苏守宝.基于整体变分降噪算法下的多频率超声衍射层析成像[J].电子学报,2009,28(4):828-832. Fang Jie,Wei Sui,Su Shoubao.The multi-band diffraction ultrasound tomography images based on the total variation denoised algorithm [J].Acta Electronica Sinica,2009,28(4):828-832.(in Chinese)
[13]  Sloan S W.A fast algorithm for constructing Delaunay triangulations in the plane [J].Advances in Engineering Software,1987,9(1):34-55.
[14]  Zhang D W,Tao J X.A novel gridding algorithm using NUFFT with applications to ultrasound diffraction tomography [A].Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering [C].Shanghai,China:IEEE,2008.2473-2476.
[15]  Dutt A,Rokhlin V.Fast Fourier transforms for nonequispaced data,II [J].Applied and Computational Harmonic Analysis,1995,2(1):85-100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133