全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

量子三值全加器设计

DOI: 10.3969/j.issn.0372-2112.2014.07.033, PP. 1452-1456

Keywords: 多值逻辑,全加器,扩展三值Toffoli门,三值Feynman门

Full-Text   Cite this paper   Add to My Lib

Abstract:

量子多值加法器是构建量子多值计算机的基本模块.通过认真分析三元域上加法的运算规则及带进位加法的真值表,通过设置扩展三值Toffoli门的控制条件有效实现一位加法在各种情况下的进位,利用三值Feynman门实现一位加法的求和运算,由此设计出一位量子三值全加器,再利用进位线将各位量子全加器连接起来构造出n位量子三值全加器.与同类电路相比,此量子全加器所使用的辅助线及量子代价都有所减少.

References

[1]  Liu Z H,Chen H W,Xu J,et al.High-dimensional deterministic multiparty quantum secret sharing without unitary operations[J].Quantum Information Processing,2013,12(1):587-599.
[2]  Muthukrishnan A,Stroud C R.Multivalued logic gates for quantum computation[J].Physical Review A,2000,62(5):052309/1-8.
[3]  Khan M H A,Perkowski M A.Quantum realization of ternary encoder and decoder[A].Proceedings of 7th International Symposium On Representations and Methodology of Future Computing Technologies (RM2005)[C].Tokyo:IEEE,2005.5-6.
[4]  Miller D M,Maslov D,Dueck G W.Synthesis of quantum multiple-valued circuits[J].Journal of Multiple-Valued Logic Soft Computing,2006,12(5-6):1-28.
[5]  Khan M H A.Synthesis of quaternary reversible/quantum comparators[J].Journal of Systems Architecture,2008,54(10):977-982.
[6]  Wang Y S,Perkowski M A.Improved complexity of quantum oracles for ternary grover algorithm for graph coloring[A].Proceedings of 41st IEEE International Symposium on Multiple-Valued Logic (ISMVL) [C].Tusula:IEEE,2011.294-301.
[7]  Plesch M,Brukner C.Quantum-state preparation with universal gate decompositions[J].Physical Review A,2011,83(3):032302/1-5.
[8]  Bartlett S D,Guise H D,Sanders B C.Quantum encodings in spin systems and harmonic oscillators[J].Physical Review A,2002,65(5):052316/1-4.
[9]  Ashikhmin A,Knill E.Nonbinary quantum stabilizer codes[J].IEEE Transactions on Information Theory,2001,47(7):3065-3072.
[10]  Khan M H A,Perkowski M A.Quantum ternry parallel adder/subtractor with partially-look-ahead carry[J].Journal of Systems Architecture,2007,53(7):453-464.
[11]  Yang G W,Xie F,Song X Y,et al.Universality of 2-qudit ternary reversible gates[J].Journal of Physics A,2006,39(24):7763-7773.
[12]  Khan M H A.Quantum realization of multiple-valued Feynman and Toffoli gates without ancilla input[A].Proceedings of 39th International Symposium on Multiple-Valued Logic (ISMVL)[C].Naha Okinawa:IEEE,2009.103-108.
[13]  Nielsen M A,Chuang I L.Quantum Computation and Quantum Information[M].Cambridge,England:Cambridge University Press,2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133