全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于卡尔曼滤波的压缩感知弱匹配去噪重构

DOI: 10.3969/j.issn.0372-2112.2014.06.004, PP. 1061-1067

Keywords: 压缩感知,去噪,自适应重构,卡尔曼滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

现有的贪婪迭代类压缩感知重构算法均基于最小二乘对信号进行波形估计,未考虑到可能将量测噪声引入信号估计的情况.针对以上不足,提出了一种基于线性Kalman滤波的压缩感知弱匹配去噪重构算法.该算法不需已知稀疏度先验,通过引入Kalman滤波,在最小均方误差准则下,每次迭代都获得最佳信号估计;并以弱匹配的方式同时筛选出有效的原子,并剔除冗余原子进而重构原信号.新算法继承了现有贪婪迭代类算法的有效性,同时避免了因噪声干扰或稀疏度未知导致的重构失败.理论分析和实验表明,新算法在同等条件下,重构性能优于现有典型贪婪迭代类算法,且其运算时间低于BPDN算法和同类的KFCS算法.

References

[1]  E J Candès,M B Wakin.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[2]  D L Donoho.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
[3]  R G Baraniuk.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
[4]  S S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1998,20(1):33-61.
[5]  S J Kim,K Koh,M Lustig.An interior-point method for large-scale l1 regularized least squares[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617.
[6]  A T Mario,R D Nowak,S J Wright.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597.
[7]  J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[8]  W Dai,O Milenkovic.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Trans on Information Theory,2009,55(5):2230-2249.
[9]  D Needell,J A Tropp.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Communications of the ACM,2010,53(12):93-100.
[10]  T T Do,L Gan,N S Nguyen.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[A].Asilomar Conference on Signals,Systems and Computers[C] Pacific Grove,California:IEEE,2008.581-587.
[11]  刘亚新,赵瑞珍,胡绍海,等.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报.2010,32(11):2713-2717. Y Liu,R Zhao,S Hu,et al.Regularizedadaptive matching pursuit algorithm for signal reconstruction based on compressive sensing[J].Journal of Electronics & Information Technology,2010,32(11):2713-2717.(in Chinese)
[12]  H Huang,A Makur.Backtracking-based matching pursuit method for sparse signal reconstruction[J].IEEE Signal Processing Letters,2011,18(7):391-394.
[13]  N Vaswani.Kalman filtered compressed sensing[A].Image Processing,2008.ICIP 2008.15th IEEE International Conference on[C].San Diego,California:IEEE,2008.893-896.
[14]  A Carmi,P Gurfil,D Kanevsky.Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms [J].IEEE Transactions on Signal Processing,2010,58(4):2405-2409.
[15]  D Baron,M F Duarte,M B Wakin,et al.Distributed Compressive Sensing[DB/OL].http://arxiv.org/abs/0901.3403,2009.
[16]  E J Candès.The restricted isometry property and its implications for compressed sensing[J].Compte Rendus de l''Academie des Sciences,2008,Series I(346):589-592.
[17]  张明友,吕明.信号检测与估计 [M].第二版.北京:电子工业出版社,2005.
[18]  秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
[19]  Cormen Thomas H,Leiserson Charles E,Rivest Ronald L,等.算法导论[M].潘金贵,顾铁成,李成法,等,译.北京:机械工业出版社,2006.451-465.
[20]  T Blumensath,M E Davies.Iterative Hard Thresholding for Compressed Sensing[EB/OL].http://arxiv.org/pdf/0805.0510v1.pdf,2008.
[21]  E Candès,J Romberg,T Tao.Stable signal recovery from incomplete and inaccurate measurements[J].Commun Pure Appl Math,2006,59(8):1207-1223.
[22]  M Grant,S Boyd.cvx Users'' Guide for cvx Version 1.2 [EB/OL].http://www.stanford.edu/~boyd/cvx,2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133