全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于隐反馈的类时齐Markov推荐模型

DOI: 10.3969/j.issn.0372-2112.2014.04.013, PP. 703-710

Keywords: Web挖掘,类时齐Markov模型,平稳分布,用户聚类,个性化推荐

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统Markov链模型在用户浏览行为预测方面体现出较好的性能,但不能很好的体现出用户的兴趣度和所推荐的页面的重要性,因此本文提出类时齐Markov模型.该模型给不同的类别用户单独创建时齐Markov模型,并用时齐Markov模型的平稳分布表征用户的访问兴趣和页面的重要程度.本文进而提出了基于隐反馈的类时齐Markov推荐模型,在真实的WEB服务器日志数据上的实验证明,类时齐Markov模型具有更好的推荐性能.

References

[1]  邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报,2003,26(11):1510-1517. Xing Y K,Ma S P.Modeling user navigation sequences based on multi-Markov chains[J].Chinese Journal of Computers,2003,26(11):1510-1517.(in Chinese)
[2]  林文龙,刘业政,等.基于混合隐Markov链浏览模型的WEB用户聚类与个性化推荐[J].情报学报,2009,28 (4):557-564. Lin W L,Liu Y Z,et al.Web user clustering and personalized recommendation based on mixtures of hidden Markov chain models[J].Journal of the China Society for Scientific and Technical Information,2009,28 (4):557-564.(in Chinese)
[3]  朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报,2012,2(41):163-175. Zhu Y X,Lu L Y.Evaluation metrics for recommender systems[J].Journal of University of Electronic Science and Technology of China,2012,41(2):163-175.(in Chinese)
[4]  Awad M A,Khalil I.Prediction of user''s web-browsing behavior:Application of Markov model[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(4):1131-1142.
[5]  吴永辉,王晓龙,等.基于主题的自适应在线网络热点发现方法及新闻推荐系统[J].电子学报,2010,38(11):2620-2624. Wu Y H,Wang X L,et al.Adaptive on-line web topic detection method for web news recommendation system[J].Acta Electronica Sinica,2010,38(11):2620-2624.(in Chinese)
[6]  Mika P.Ontologies are us:A unified model of social networks and semantics[J].Web Semantics:Science,Services and Agents on the World Wide Web,2007,5(1):5-15.
[7]  许海玲,吴潇,等.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. Xu H L,Wu X,et al.Comparison study of internet recommendation system[J].Journal of Software,2009,20(2):350-362.(in Chinese)
[8]  黄世平,黄晋,等.自动建立信任的防攻击推荐算法研究[J].电子学报,2013,41 (2):382-387. Huang S P,Huang J,et al.Anti-attack recommender algorithm based on automatic trust establishment[J].Acta Electronica Sinica,2013,41(2):382-387.(in Chinese)
[9]  Wan M,J[AKo¨]nsson A,et al.A random indexing approach for web user clustering and web prefetching[A].Proceedings of the 15th International Conference on New Frontiers in Applied Data Mining [C].Berlin,2011.40-52.
[10]  Bhawna N,Suresh J.Generating a new model for predicting the next accessed web page in web usage mining[A].Proceedings of 3rd International Conference on Emerging Trends in Engineering and Technology[C].India,2010.485-490.
[11]  Oard D W,Kim J.Implicit feedback for recommender systems[A].Proceedings of the AAAI Workshop on Recommender Systems[C].Wollongong,1998.81-83.
[12]  张引,张斌,等.面向自主意识的标签个性化推荐方法研究[J].电子学报,2012,40(12):2353-2359. Zhang Y,Zhang B,et al.Autonomy oriented personalized tag recommendation[J].Acta Electronica Sinica,2012,40(12):2353-2359.(in Chinese)
[13]  Knijnenburg B P,Willemsen M C,et al.Explaining the user experience of recommender systems[J].User Modeling and User-Adapted Interaction,2012,22(4-5):441-504.
[14]  Liu Y T,Liu T Y,et al.Browse Rank:letting web users vote for page importance[A].Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Singapore,2008.451-458.
[15]  Konstan J A,Riedl J.Recommender systems:from algorithms to user experience[J].User Modeling and User-Adapted Interaction,2012,22(1-2):101-123.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133