全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

噪声干扰背景下压缩感知雷达波形优化设计

DOI: 10.3969/j.iss.0372-2012-2014.03.008, PP. 469-476

Keywords: 压缩感知雷达,波形设计,感知矩阵平均相干系数,信干噪比,模拟退火

Full-Text   Cite this paper   Add to My Lib

Abstract:

为改善压缩感知雷达(CompressiveSensingRadar,CSR)在干扰噪声背景下目标检测及距离-多普勒参数的估计性能,该文提出一种感知矩阵平均相干系数(AveragedCoherenceoftheSensingMatrix,ACSM)与信干噪比(SignaltoInterferenceandNoiseRatio,SINR)联合优化的波形设计方法.文中首先建立了CSR距离-多普勒二维参数感知模型,推导了波形联合优化设计的目标函数,其次以多相编码信号作为优化码型并采用模拟退火(SimulatedAnnealing,SA)算法对目标函数进行优化求解.与传统CSR波形相比,优化设计的波形提高了CSR在低信干噪比条件下的成功检测概率,同时有效降低了目标距离-多普勒参数估计误差,由此改善了CSR在干扰噪声背景下的距离-多普勒成像质量.计算机仿真验证了该方法的有效性.

References

[1]  石光明, 刘丹华, 高大化, 等.压缩感知理论及其研究进展[J].电子学报, 2009, 37(5):1070-1081. SHI Guang-ming, LIU Dan-hua, GAO Da-hua, et al.Advances in theory and application of compressed sensing[J].Acta Electronica Sinica, 2009, 37(5):1070-1081.(in Chinese)
[2]  Donoho D L.Compressed sensing[J].IEEETransactions on Information Theory, 2006, 52(4):1289-1306.
[3]  刘天鹏, 刘振, 魏玺章.基于压缩感知的脉间捷变频SAR成像研究[J].电子学报, 2012, 40(6):1073-1078. LIU Tian-peng, LIU Zhen, WEI Xi-zhang.Research on interpulse frequency agility SAR imaging via compressed sensing[J].Acta Electronica Sinica, 2012, 40(6):1073-1078.(in Chinese)
[4]  Potter L C, Ertin E, Parker J T, et al.Sparsity and compressed sensing in radar imaging[J].Proceedings of the IEEE, 2010, 98 (6):1006-1020.
[5]  Baraniuk R, Steeghs P.Compressiveradar imaging[A].2007 IEEE International Radar Conference[C].Boston, Massachusetts, USA:IEEE, 2007.128-133.
[6]  Herman M A, Strohmer T.High-resolution radar via compressed sensing[J].IEEETransactions on Signal Processing, 2009, 57(6):2275-2284.
[7]  Chen C Y, Vaidyanathan P P.Compressed sensing in MIMO radar[A].2008 42nd Asilomar Conference on Signals, Systems and Computers[C].Piscataway, NJ, USA:IEEE, 2008.41-44.
[8]  Shi G M, Chen X Y, Qi F, et al.UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2008, 55(4):379-383.
[9]  Tello A M, López-Dekker F, Mallorquí J J.A novel strategy for radar imaging based on compressive sensing[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12):4285-4295.
[10]  Tropp J A, Wright S J.Computational methods for sparse solution of linear inverse problems[J].Proceedings of the IEEE, 2010, 98(6):948-958.
[11]  Tropp J A.Greed is good:Algorithmic results for sparse approximation[J].IEEE Transactions on Information Theory, 2004, 50(10):2231-2242.
[12]  Donoho D L, Elad M, Temlyakov V N.Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEETransactions on Information Theory, 2006, 52(1):6-18.
[13]  Elad M.Optimized projections for compressed sensing[J].IEEE Transactions on Signal Processing, 2007, 55(12):5695-5702.
[14]  Needell D.Topics inCompressed Sensing[D].California:University of California, 2009.
[15]  Wang G H, Lu Y L.Designing single/multiple sparse frequency waveforms with sidelobe constraint[J].IET Radar, Sonar & Navigation, 2011, 5(1):32-38.
[16]  Deng H.Synthesis of binary sequences with good autocorrelation and crosscorrelation properties by simulated annealing[J].IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1):98-107.
[17]  Levanon N, Mozeson E.Radar Signals[M].New York:John Wiley & Sons, 2004.297-301.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133