全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

低信噪比下非凸化压缩感知超宽带信道估计方法

, PP. 353-359

Keywords: 压缩感知,超宽带通信,稀疏信道估计,自适应感知信息算子,修正SAMP算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

受感知信息算子矩阵相干性和噪声的影响,压缩感知超宽带(UWB)信道估计误差过大.为此,首先提出利用压缩观测信号加权构造自适应感知信息(ASI)算子矩阵的方法,ASI算子矩阵不仅具有弱相干性,而且包含观测信息,适用于重建算法选择最优稀疏表示原子.其次提出修正稀疏度自适应匹配追踪(SAMP)算法,无需稀疏度或信噪比的先验信息实现压缩感知稀疏信号准确重建.最后基于ASI算子矩阵和修正SAMP算法提出非凸化压缩感知UWB信道估计方法,理论分析和仿真结果均表明该方法能在低信噪比和极低压缩比下实现UWB信道的准确估计.

References

[1]  张宗念, 黄仁泰, 闫敬文.压缩感知信号盲稀疏度重构算法[J].电子学报, 2011, 39(1):18-22. Zhang Zong-nian, Huang Ren-tai, Yan Jing-wen.A blind sparsity reconstruction algorithm for compressed sensing signal[J].Acta Electronica Sinica, 2011, 39(1):18-22.(in Chinese)
[2]  D L Donoho, M Elad, V Temlyakov.Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEE Transactions on Informations Theory, 2006, 52(1):6-18.
[3]  E Candès, J Romberg, T Tao.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
[4]  D L Donoho, X M Huo.Uncertainty principles and ideal atomic decomposition[J].IEEE Transactions on Information Theory, 2001, 47(7):2845-2862.
[5]  T T Cai, L Wang, G W Xu.Stable recovery of sparse signals and an oracle inequality[J].IEEE Transactions on Information Theory, 2010, 56(7):3516-3522.
[6]  J A Tropp.Greed is good:Algorithmic results for sparse approximation[J].IEEE Transactions on Information Theory, 2004, 50(10):2231-2242.
[7]  梁巍, 阙沛文, 陈亮, 等.基于残差比阈值的迭代终止条件匹配追踪稀疏分解方法[J].上海交通大学学报, 2010, 44(2):171-175. Liang Wei, Que Pei-wen, Chen Liang, et al.Residual ratio iteration termination condition for MP method[J].Journal of ShangHai Jiaotong University, 2010, 44(2):171-175.(in Chinese)
[8]  J Haupt, W U Bajwa, G Raz, et al.Toeplitz compressed sensing matrices with applications to sparse channel estimation[J].IEEE Transactions on Information Theory, 2010, 56(11):5862-5875.
[9]  D L Donoho.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[10]  T Agrawal, V Lakkundi, A Griffin, et al.Compressed sensing for OFDM UWB systems[A].Radio and Wireless Symposium[C].Phoenix, USA, 2011.190-193.
[11]  J L Paredes, G R Arce, Z Wang.Ultra-wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3):383-395.
[12]  于华楠, 郭树旭.基于压缩感知的超宽带信道估计方法的研究[J].电子与信息学报, 2012, 34(6):1452-1456. Yu Hua-Nan, Guo Shu-Xu.Research on CS-based channel estimation methods for UWB communications[J].Journal of Electronics & Information Technology, 2012, 34(6):1452-1456.(in Chinese)
[13]  E Candès, J Romberg.Sparsity and incoherence in compressive sampling[J].Inverse Problems, 2007, 23(3):969-985.
[14]  李佳, 王强, 沈毅, 等.压缩感知中测量矩阵与重建算法的协同构造[J].电子学报, 2013, 41(1):29-34. Li Jia, Wang Qiang, Shen Yi, et al.Collaborative construction of measurement matrix and reconstruction algorithm in compressive sensing[J].Acta Electronica Sinica, 2013, 41(1):29-34.(in Chinese)
[15]  焦李成, 杨淑媛, 刘芳, 等.压缩感知回顾与展望[J].电子学报, 2011, 39(7):1561-1662. Jiao Li-Cheng, Yang Shu-Yuan, Liu Fang, et al.Development and prospect of compressive sensing[J].Acta Electronica Sinica, 2011, 39(7):1561-1662.(in Chinese)
[16]  王军华, 黄知涛, 周一宇, 等.基于近似l0范数的稳健稀疏重构算法[J].电子学报, 2012, 40(6):1185-1189. Wang Jun-hua, Huang Zhi-tao, ZhouYi-yu, et al.Robust sparse recovery based on approximate l0 norm[J].Acta Electronica Sinica, 2012, 40(6):1185-1189.(in Chinese)
[17]  R Yan, Q Wan, L Y Wan, et al.Greedy approach to sparse multi-path channel estimation using sensing dictionary[J].International Journal of Adaptive Control and Signal Processing, 2011, 25(6):544-553.
[18]  K Schnass, P Vandergheynst.Dictionary preconditioning for greedy algorithms[J].IEEE Transactions on Signal Process, 2008, 56(5):1994-2002.
[19]  黄安民.基于感知字典的稀疏重建算法研究[D].成都:电子科技大学, 2011. Huang An-min.Sparse Recovery Algorithms Based on Sensing Dictionary[D].Chengdu:University of Electronic Science and Technology of China, 2011.(in Chinese)
[20]  T T Do, L Gan, N Nguyen, et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[A].Asilomar Conference on Signals, Systems, and Computers[C].California, USA, 2008.581-587.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133