全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于短时分数阶傅里叶变换的时频分析方法

, PP. 347-352

Keywords: 短时分数阶傅立叶变换,时频分析,阶次估计,多目标信号分离

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了短时分数阶傅里叶变换(STFRFT)时频分析方法的分辨率精度和算法性能.首先,文中给出了一种STFRFT时频分辨率的数学计算表达式,其有利于时频分辨率的量化比较,仿真结果表明该理论量化值与观察值基本吻合;其次,针对算法运算量大的问题,提出了一种STFRFT的快速计算方法,它较传统的穷举搜索方法运算量约降低1个数量级;最后,给出了算法估计误差的理论分析并运用该方法对多目标信号进行了分析,仿真表明该方法可有效抑制交叉项和解决多分量时频信号的分离问题.

References

[1]  邹红星, 周小波, 等.时频分析:回溯与前瞻[J].电子学报, 2000, 28(9):78-84. Zou Hong-xing, Zhou Xiao-bo, et al.Which time-frequency analysis-a survey[J].Acta Electronica Sinica, 2000, 28(9):78-84.(in Chinese)
[2]  Ran Tao, Yan-Lei Li, Yue Wang.Short-time fractional fourier transform and Its applications[J].IEEE Trans Signal Process, 2010, 58(5):2568-2580.
[3]  Chris Capus, Keith Brown.Short-time fractional Fourier methods for the time-frequency representation of chirp signals[J].J Acoust Soc Am, 2003, 113(6):3253-3263.
[4]  Aled T.Catherall, Duncan P.Williams.High resolution spectrograms using a component optimized short-term fractional Fourier transform[J].Signal Processing, 2010, 90(5):1591-1596.
[5]  L Linnett, S Morrison, P Nicholson.The analysis of signals containing mixtures of linear chirps[J][A].Proc Inst Acoust, 2001, 23:55-62.
[6]  邓兵, 陶然, 杨曦.分数阶Fourier域的采样及分辨率分析[J].自然科学进展, 2007, 17(5):655-661. Deng Bing, Tao R, Yang Xi.Sample of fractional Fourier domain and analysis of acceleration resolution[J].Progress in Natal Science.2007, 17(5):655-661.(in Chinese)
[7]  李靖, 王树勋, 汪飞.基于分数阶傅里叶变换的chirp信号时频分析[J].系统工程与电子技术, 2005, 27(6):988-990. Li Jing, Wang, Shu xun, Wang Fei.Chirp signal analysis based on PWD in fractional Fourier transform domain[J].Systems Engineering and Electronics, 2005, 27(6):988-990.(in Chinese)
[8]  王忠仁, 林君, 李文伟.基于Wigner-Ville分布的复杂时变信号的时频分析[J].电子学报, 2005, 33(12):2239-2241. Wang Zhong-ren, Lin Jun, Li Wen-Wei.Time-frequency analysis for complex time-varying signals based on wigner-ville distribution[J].Acta Electronica Sinica, 2005, 33(12):2239-2241.(in Chinese)
[9]  L.Almeida.The fractional Fourier transform and time-frequency representations.IEEE Trans Signal Process, 1994, 42(11):3084-3091.
[10]  V Namias.The fractional order Fourier transform and its application in quantum mechanics[J].J Inst Math Appl, 1980, 25:241-265.
[11]  S Shinde, V Gadre.An uncertainty principle for real signals in the fractional Fourier transformdomain[J].IEEE Trans Signal Process, 2001, 49(11):2545-2548.
[12]  张玉恒, 吴启晖, 王金龙.基于时频加窗短时傅里叶变换的LFM干扰抑制[J].电子与信息学报, 2007, 29(6):1361-1364. Zhang Yuheng, Wu Qi Hui, Wang Jin long.LFM interference suppression using time frequency windowed short time fourier transfor[J].Journal of Electronics & Information Technology.2007, 29(6):1361-1364.(in Chinese)
[13]  向强, 秦开宇.基于线性正则变换与短时傅里叶变换联合的时频分析方法[J].电子学报, 2011, 39(7):1508-1513. Xiang Qiang, Qin Kai Yu.A time-frequency analysis method based on linear canonical transform and short-time fourier transform[J].Acta Electronica Sinica, 2011, 39(7):1508-1513.(in Chinese)
[14]  李家强, 金荣洪, 等.基于高斯短时分数阶傅里叶变换的多分量LFM信号检测与参数估计[J].电子与信息学报, 2007, 29(3):570-573. Li Jia, qiang, Jin Rong-hong, et al.Detection and estimation of multi-component LFM signals based on gauss short-time fractional fourier transform[J].Journal of Electronics & Information Technology, 2007, 29(3):570-573.(in Chinese)
[15]  Ozaktas H M, Arikan O, Kutay M A.Digital commutation of the fractional Fourier transform[J].IEEE Trans signal Processing, 1996, 44(9):2141-2150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133