全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

粒子群进化学习自适应双通道脉冲耦合神经网络图像融合方法研究

, PP. 217-222

Keywords: 双通道脉冲耦合神经网络,进化学习,多准则目标函数,图像融合

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对双通道脉冲耦合神经网络图像融合方法中参数选取不易确定之挑战,提出了一种基于进化学习的自适应双通道脉冲耦合图像融合方法.通过引入自适应学习能力的进化学习算法和构建新的优化目标对双通道脉冲耦合神经网络模型参数来进行优化,提出的新算法能够有效地找到双通道脉冲耦合神经网络模型的近似最优参数,克服了经典双通道脉冲耦合神经网络图像融合方法需要人工交互穷举尝试不同参数来获取较优参数之缺点.实验研究亦表明了上述优点.

References

[1]  Chai Y, Li H F, Qu J F.Image fusion scheme using a novel dual-channel PCNN in lifting stationary wavelet domain[J].Optics Communications, 2010, 283(19):3591-3602.
[2]  Piella G.A general framework for multiresolution image fusion:from pixels to regions[J].Information Fusion, 2003, 4(4):259-280.
[3]  Qu X B, Yan J W, Xiao H Z, Zhu Z Q.Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain[J].Acta Automatica Sinica, 2008, 34(12):1508-1514.
[4]  Yin H T, Li S T, Fang L Y.Simultaneous image fusion and super-resolution using sparse representation[J].Information Fusion, 2013, 14(3):229-240.
[5]  Kennedy J, Eberhart R.Particle swarm optimization[A].IEEE Int Conf on Neural Networks[C].Piscataway:IEEE Service Center, 1995.1942-1948.
[6]  Shi Y, Eberhart R.A modified particle swarm[A].Proceeding of IEEE International Conference on Evolutionary Computation Proceedings.New York, 1998.69-73.
[7]  张波, 薛正辉, 任武, 李伟明, 盛新庆.采用粒子群算法的频率选择表面优化设计[J].电子学报, 2013, 41(3):603-608. Zhang Bo, Xue Zhenghui, Ren Wu, Li Weiming, Sheng Xinqing.Particle swarm optimization of frequency selective surface[J].Acta Electronica Sinica, 2013, 41(3):603-608.(in Chinese)
[8]  吴晓军, 李峰, 马悦, 辛云宏.均匀搜索粒子群算法的收敛性分析[J].电子学报, 2012, 40(6):1115-1120. Wu Xiaojun, Li Feng, Ma Yue, Xin Yunhong.The convergence analysis of the uniform search particle swarm optimization[J].Acta Electronica Sinica, 2012, 40(6):1115-1120.(in Chinese)
[9]  罗晓清.多传感图像融合理论及其应用研究[D].江南大学, 2010.61-63. Luo Xiaoqing.Study on the theory of multi-sensor image fusion and its applications[D].Jiangnan University, 2010.61-63.(in Chinese)
[10]  POHL C, Van Genderen JL.Multisensor image fusion in remote sensing:concepts, methods and applications[J].International Journal of Remote Sensing, 1998, 19(5):823-854.
[11]  Carper W J, Lillesand T M, Kiefer R W.The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data[J].Photogramm Eng Remote Sensing, 1990, 56(4):459-467.
[12]  ChavezJr P S, Sides S C, Anderson J A.Comparison of three difference methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J].Photogramm Eng Remote Sensing, 1991, 57(3):295-303.
[13]  Toet A.Multiscale contrast enhancement with applications to image fusion[J].Optical Engineering, 1992, 31(5):1026-1031.
[14]  Chipman L J, Orr T M, Graham L N.Wavelets and image fusion[A].Proc of Int Conf on Image Processing[C].Los Alamitos:IEEE Computer Society, 1995.248-251.
[15]  Li H, Manjunath BS, Mitra S.Multisensor image fusion using the wavelet transform.Graphical Models and Image Process, 1995, 57(3):235-245.
[16]  Li X, He M, Roux M.Multifocus image fusion based on redundant wavelet transform.Image Processing, IET, 2010, 4(4):283-293.
[17]  Huang W, Jing Z L.Multi-focus image fusion using pulse coupled neural network.Pattern Recognition Letter, 2007, 28(9):1123-1132.
[18]  Wang Z B, Ma Y D, Gu J.Multi-focus image fusion using PCNN[J].Pattern Recognition, 2010, 43(6):2003-2016.
[19]  Huang W, Jing Z L.Evaluation of focus measures in multi-focus image fusion[J].Pattern Recognition Letters, 2007, 28(4):493-500.
[20]  Wang Z B, Ma Y D.Medical image fusion using m-PCNN[J].Information Fusion, 2008, 9(2):176-185.
[21]  Wang Z B, Ma Y D, Cheng F Y, Yang L Z.Review of pulse-coupled neural networks.Image and Vision Computing, 2010, 28(1):5-13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133