全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于稀疏化最小生成树聚类的个性化轨迹隐私保护算法

DOI: 10.3969/j.issn.0372-2112.2015.11.029, PP. 2338-2344

Keywords: 轨迹相似性,个性化轨迹k-匿名,稀疏化,最小生成树聚类,k-节点划分

Full-Text   Cite this paper   Add to My Lib

Abstract:

现有的轨迹匿名算法没有充分考虑轨迹内外在特征信息以及移动对象个性化的隐私需求.为此,本文提出个性化轨迹k-匿名的概念,并提出轨迹结构相似性度量模型,综合考虑轨迹方向、速度、转角和位置等内外在特征信息;然后,提出基于稀疏化最小生成树聚类的个性化隐私保护算法,通过稀疏化的方法降低最小生成树聚类的执行时间,通过贪婪策略生成近似最优的轨迹k-匿名集合.实验结果表明,本文的轨迹结构相似性度量模型能更加准确地度量轨迹间的相似性,所提算法花费了更少的时间代价,具有更高的数据可用性.

References

[1]  韩建民,岑婷婷,虞慧群.数据表k-匿名化的微聚集算法研究[J]. 电子学报,2008,36(11):2021-2029. Han Jianmin,Cen Tingting,Yu Huiqun.Research in microaggregation algorithm for k-anonymization[J]. Acta Electronica Sinica,2008,36(11):2021-2029.(in Chinese)
[2]  袁冠,夏士雄,张磊,等.基于结构相似度的轨迹聚类算法[J]. 通信学报,2011,32(9):103-110. Yuan G,Xia S X,Zhang L,et al.Trajectory clustering algorithm based on structural similarity[J]. Journal on Communications,2011,32(9):103-110.(in Chinese)
[3]  You TH,Peng WC,Lee WC.Protecting moving trajectories with dummies[A]. 8th International Conference on Mobile Data Management(MDM''07)[C]. Mannheim,Germany:IEEE;2007.278-282.
[4]  Gao S,Ma J,Shi W,et al.LTPPM:a location and trajectory privacy protection mechanism in participatory sensing[J]. Wireless Communications andMobile Computing,2012.
[5]  Terrovitis M,Mamoulis N.Privacy preservation in the publication of trajectories[A]. Ninth International Conference on Mobile Data Management(MDM''08)[C]. Beijing,China:IEEE;2008.65-72.
[6]  Chen R,Fung B,Mohammed N,et al.Privacy-preserving trajectory data publishing by local suppression[J]. Information Sciences,2013,231:83-97.
[7]  M E Nergiz,M Atzori,Y Saygin,B Guc.Towards trajectory anonymization:a generalization-based approach[J]. Transactions on Data Privacy,2009,2(1):47-75.
[8]  Josep Domingo-Ferrer,Rolando Trujillo-Rasua.Microaggregation-and permutation-based anonymization of movement data[J]. Information Sciences,2012.208:55-80.
[9]  Mahdavifar S,Abadi M,Kahani M,et al.AClustering-based Approach for Personalized Privacy Preserving Publication of Moving Object Trajectory Data[M]. Springer Berlin Heidelberg:Network and System Security,2012:149-165.
[10]  R.W.Floyd,Algorithm 97:shortest path[J]. Communications of the ACM 1962,5(6):345-350.
[11]  Frentzos E,Gratsias K,Pelekis N,et al.Nearest Neighbor Search on Moving Object Trajectories[M]. Springer Berlin Heidelberg:Advances in Spatial and Temporal Databases,2005:328-345.
[12]  李建中,刘显敏.大数据的一个重要方面:数据可用性[J]. 计算机研究与发展,2013,50(6):1147-1162. Li Jianzhong,Liu Xianmin.An impotant aspect of big data:Data usability[J]. Journal of Computer Research and Development 2013,50(6):1147-1162.(in Chinese)
[13]  刘大有,陈慧灵,齐红,等.时空数据挖掘研究进展[J]. 计算机研究与发展,2013,50(2):225-239. Liu Dayou,Chen Huiling,Qi Hong,et al.Advances in spatiotemporal data mining[J]. Journal of Computer Research and Development 2013,50(2):225-239.(in Chinese)
[14]  杨高明,杨静,张健沛.半监督聚类的匿名数据发布[J]. 电子学报,2011,32(11):1489-1494. Yang Gaoming,Yang Jing,Zhang Jianpei.Semi-supervised clustering-based anonymous data publishing[J]. Acta Electronica Sinica,2011,32(11):1489-1494.(in Chinese)
[15]  杨静,王波.一种基于最小选择度优先的多敏感属性个性化l-多样性算法[J]. 计算机研究与发展,2012,49(9):2603-2610. Yang Jing,Wang Bo.Personalized l-diversity algorithm for multiple sensitive attributes based on minimum selected degree first[J]. Journal of Computer Research and Development,2012,49(9):2603-2610.(in Chinese)
[16]  王波,杨静.一种基于逆聚类的个性化隐私匿名方法[J]. 电子学报,2012,40(5):883-890. Wang Bo,Yang Jing.A personalized privacy anonymous method based on inverse clustering[J]. Acta Electronica Sinaca,2012,40(5):883-890.(in Chinese)
[17]  韩建民,于娟,虞慧群,等.面向敏感值的个性化隐私保护[J]. 电子学报,2010,38(7):1723-1728. Han Jianmin,Yu Juan,Yu Huiqun et al.Individuation privacy preservation oriented to sensitive values[J]. Acta Electronica Sinaca,2010,38(7):1723-1728.(in Chinese)
[18]  Abul O,Bonchi F,Nanni M.Never walk alone:uncertainty for anonymity in moving objects databases[A]. Proceedings of the 24th IEEE International Conference on Data Engineering[C]. Cancun,Mexico,2008.376-385.
[19]  Abul O,Bonchi F,Nanni M.Anonymization of moving objects databases by clustering and perturbation[J]. Information.Systems,2010,35(8):884-910.
[20]  Huo Z,Huang Y,Meng X.History trajectory privacy-preserving through graph partition[A]. Proceedings of the First International Workshop on Mobile Location-based Service[C]. Beijing,China,ACM,2011.71-78.
[21]  Chen L,?zsu MT,Oria V.Robust and fast similarity search for moving object trajectories[A]. Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data[C]. Baltimore,Maryland,USA:ACM Press;2005.491-502.
[22]  Tiakas E,Papadopoulos AN,Nanopoulos A,Manolopoulos Y,Stojanovic D,Djordjevic-Kajan S.Searching for similar trajectories in spatial networks[J]. Journal of Systems and Software,2009;82(5):772-788.
[23]  Gao S,Ma J,Sun C,et al.Balancing trajectory privacy and data utility using a personalized anonymization model[J]. Journal of Network and Computer Applications,2014,38:125-134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133