全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于Hessian核范数正则化的快速图像复原算法

DOI: 10.3969/j.issn.0372-2112.2015.10.018, PP. 2001-2008

Keywords: Hessian核范数,图像复原,交替迭代算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Hessian核范数进行图像复原是目前较好的高阶正则化方法,但是由于Hessian核范数正则项的高度非线性和不可微性,图像去模糊和去噪过程耦合度高,求解算法的复杂度高.本文利用变量分裂设计了一种具有闭解形式的交替迭代最小化快速图像复原算法,将图像去模糊、去噪分步进行,并给出算法的收敛性证明.实验结果表明,本文方法不仅在峰值信噪比方面优于原有的基于Hessian核范数图像复原的主优化(Majorization-Minimization,MM)方法,而且大大降低了算法的迭代次数和运行时间.

References

[1]  Y Wang,J Yang,W Yin,Y Zhang.A new alternating minimization algorithm for total variation image reconstruction[J].SIAM Journal on Imaging Science,2008,1(3):248-272.
[2]  张航,罗大庸.一种改进的全变差盲图像复原方法[J].电子学报,2005,33(7):1288-1290. Zhang Hang,Luo Da-yong.A modified method for total variation blind image restoration[J].Acta Electronica Sinica,2005,33(7):1288-1290.(in Chinese)
[3]  卢成武,宋国乡.带曲波域约束的全变差正则化抑噪方法[J].电子学报,2008,36(4):646-649. Lu Cheng-wu,Song Guo-xiang.Total variation regularization denoising method with constraint on curvelet-domain[J].Acta Electronica Sinica,2008,36(4):646-649.(in Chinese)
[4]  A Beck,M Teboulle.Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J].IEEE Transactions on Image Processing,2009,18(11):2419-2434.
[5]  王静,吕科,何宁,王茜.基于分裂Bregman方法的全变差图像去模糊[J].电子学报,2012,40(8):1503-1508. WangJing,Lv Ke,He Ning,Wang Qian.Total variation image deblurring based on split Bregman method[J].Acta Electronica Sinica,2012,40(8):1503-1508.(in Chinese)
[6]  A Chambolle.An algorithm for total variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20(1):89-97.
[7]  T F Chan,J Shen.Mathematical models for local nontexture inpaintings[J].SIAM Journal on Applied Mathematics,2002,62(3):1019-1043.
[8]  L Rudin,S Osher,E Fatemi.Nonlinear total variation based noise removal algorithms [J].Physica D,1992,60(1-4):259-268.
[9]  Y You,M Kaveh.Fourth-order partial differential equations for noise removal[J].IEEE Transactions on Image Processing,2000,9(10):1723-1730.
[10]  M Lysaker,A Lundervold,X C Tai.Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing,2003,12(12):1579-1590.
[11]  Yue Hu,Mathews Jacob.Higher degree total variation (HDTV) regularization for image recovery[J].IEEE Transactions on Image Processing,2012,21(5):2559-2571.
[12]  S Lefkimmiatis,A Bourquard,M Unser.Hessian-based norm regularization for image restoration with biomedical applications[J].IEEE Transactions on Image Processing,2012,21(3):983-995.
[13]  S Lefkimmiatis,M Unser.A projected gradient algorithm for image restoration under Hessian matrix-norm regularization[A].Proceedings of IEEE International Conference on Image Processing[C].Orlando,FL:IEEE,2012.3029-3032.
[14]  S Lefkimmiatis,J Ward,M Unser.Hessian Schatten-norm regularization for linear inverse problems[J].IEEE Transactions on Image Processing,2013,22(5):1873-1888.
[15]  Y M Huang,M K Ng,Y W Wen.A fast total variation minimization method for image restoration[J].SIAM Multiscale Modeling and Simulation,2008,7(2):774-795.
[16]  Lv Xiao-guang,Song Yong-zhong,Wang Shun-xu,Le Jiang.Image restoration with a high-order total variation minimization method[J].Applied Mathematical Modeling,2013,37(16-17):8210-8224.
[17]  Y Nesterov.A method for solving a convex programming problem with convergence rates O(1/k2)[J].Soviet Mathematics Doklady,1983,27(2):372-376.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133