全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

半导体生产线基于DBR和ANFIS相融合的动态调度方法研究

DOI: 10.3969/j.issn.0372-2112.2015.10.030, PP. 2082-2087

Keywords: 半导体生产线,动态调度,紧急订单预测,鼓-缓冲-绳子

Full-Text   Cite this paper   Add to My Lib

Abstract:

实际半导体制造过程调度问题具有大规模、不确定、带复杂约束及多目标等综合复杂性,要确保上述生产过程优化运行,必须及时有效进行动态调度.鉴于半导体生产线具有多重入特征及紧急订单对常规订单产生影响,本文给出一种基于"鼓-缓冲-绳子"(Drum-Buffer-Rope,DBR)和自适应模糊推理系统(AdaptiveNeuro-FuzzyInferenceSystem,ANFIS)相融合的半导体生产线动态调度方法.首先以最大化瓶颈设备有效产能及保证生产线负荷均衡为目标,将投料控制与工件调度有机结合进行DBR优化算法设计;其次根据生产线运行过程中积累大量的历史数据与实时数据,利用ANFIS构建紧急订单相关信息预测模型;再次结合专家经验知识,利用模糊推理系统将预测结果与相应的DBR算法相融合,使生产线提前调整投料策略,保证紧急订单到来时生产线能够有效完成其加工任务及减小紧急订单与常规订单之间的相互影响;最后通过某半导体生产线进行仿真验证,该方法能够实现生产线的多目标优化,为解决实际半导体生产调度问题提供参考.

References

[1]  刘民.基于数据的生产过程调度方法研究综述[J].自动化学报,2009,35(6):785-806. Liu Min.A survey of data-based production scheduling methods[J].Acta Automatica Sinica.2009,35(6):785-806.(in Chinese)
[2]  Cao Z C,Peng Y Z,Wang Y J.A drum-buffer-rope based scheduling method for semiconductor manufacturing system[C].IEEE Conference on Automation Science and Engineering,2011:120-125.
[3]  Sarin S C,Varadarajan A,Wang L X.A survey of dispatching rules for operational control inwafer fabrication[J].Production Planning and Control,2011,22(1):4-24.
[4]  Gloria R V,Eric T,Jacques P,et al.Dispatching of lots to dynamically reduce the wafers at risk insemiconductor manufacturing[C].IEEE International Conference on Automation Science and Engineering,2012,920-923.
[5]  Li Y,Jiang Z B,Jia W Y.A pull VPLs based release policy and dispatching rule for semiconductor wafer fabrication[C].IEEE International Conference on Automation Science and Engineering,2012:396-400.
[6]  Qiao F,Ma Y M,Li L,et al.A Petri Net and Extended Genetic Algorithm Combined Scheduling Method for Wafer Fabrication[J].IEEE transaction on Automation Science and Engineering,2013,10(1):197-204.
[7]  Li D C,Wu C S,Tasi T I,et al.Using mega-trend diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge[J].Computers and Operations Research,2007,34(4):966-982.
[8]  Meidan Y,Lerner B,Rabinowitz G,et al.Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining[J].IEEE Transactions on Semiconductor Manufacturing,2012,24(2):237-248.
[9]  彭亚珍.基于DBR的多重入制造系统调度方法研究[D].北京:北京化工大学工学硕士论文,2012,7. Peng Yazhen.Scheduling method based on DBR for re-entrant manufacturing system[D].Beijing:Dissertation for the Master Degree in Engineering of Beijing University of Chemical Technology,2012,7.
[10]  Wang C,Liu G,Chen M,et al.A supply chain network system optimum model for rush orders production decision in global manufacturing[C].8th IEEE International Conference on Industrial Informatics,2010,617-622.
[11]  Cao Z C,Zhao H D,Wang Y J.ANFIS and SA Based Approach to Prediction,Scheduling,and Performance Evaluation for Semiconductor Wafer Fabrication[J].Chinese Journal of Electronics,2013,22(1):25-30.
[12]  乔非,马玉敏,李莉,等.基于分层瓶颈分析的多重入制造系统调度方法[J].计算机集成制造系统,2010,16(4):855-860. Qiao Fei,Ma Yumin,Li Li et al.Multi-reentrant manufacturing system scheduling based on layered bottleneck analysis[J].Computer Integrated Manufacturing System,2010,16(4):855-860.(in Chinese)
[13]  Koh S G,Bulfin R L.Comparison of DBR with CONWIP in an unbalanced production line with three stations[J].International Journal of Production Research,2004,42(2):391- 404.
[14]  Wu H H,Yeh M L.A DBR scheduling method for manufacturing environments with bottleneck re-entrant flows[J].International Journal of Production Research,2006,44(5):883-902.
[15]  Chen C.A heuristic model for justifying the acceptance of rush orders in multi-plants manufacturing supply chain with outsourcing[C].8th IEEE International Conference on Industrial Informatics,2010,607-611.
[16]  Jang J R.ANFIS:adaptive-network-based fuzzy inference system[J].IEEE Transactions on Systems,Man and Cybernetics,1993,23(3):665-685.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133