全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于图元向量的差异共表达分析研究

DOI: 10.3969/j.issn.0372-2112.2015.10.019, PP. 2009-2013

Keywords: 图元向量,差异网络,小鼠衰老

Full-Text   Cite this paper   Add to My Lib

Abstract:

差异分析对于揭示生命体的生长、发育和衰老过程及疾病发生具有重大的意义,基于网络的差异分析方法已经成为系统生物学的一个研究热点.Przulj提出的图元及图元向量作为一描述网络局部结构信息的方法,已经在网络分析方法面取得了很多重要的结果.本文在图元向量的基础上提出了二种节点变化的差距度量方法,通过聚类可以分别挖掘网络中模块内变化基因簇和模块间变化基因簇.应用AGEMAP数据库中12个小鼠组织基因表达数据的结果表明:大部分聚类簇都高度显著富集与衰老相关的GO条目.

References

[1]  覃桂敏,高琳,周晓锋.一种基于统计的生物网络模体发现算法[J].电子学报,2009,37(11):2420-2426. QINGui-min,GAO Lin,ZHOU Xiao-feng.Non-Treelike Network Motif Detection Algorithm[J].Acta Electronica Sinica,2009,37(11):2420-2426.
[2]  赵建邦,董安国,高琳.一种用于生物网络数据的频繁模式挖掘算法[J].电子学报,2010,38(8):1803-1807. ZHAOJian-bang,DONG An-guo,GAO Lin.An Algorithm for Frequent Pattern Mining in Biological Networks[J].Acta Electronica Sinica,2010,38(8):1803-1807.
[3]  Jacob MZ,Suresh P.AGEMAP:A Gene Expression Database for Aging in Mice[J].PLOS Genetics,2007,3(11):2326-2337.
[4]  Remondini D,Connell BO,et al.Targeting c-Myc-activated genes with a correlation method:Detection of global changes in large gene expression network dynamics[J].Proc Natl Acad Sci USA,2005,102(19):6902-6906.
[5]  Voy BH.,Scharff J A,et al.Extracting gene networks for low-dose radiation using graph theoretical algorithms[J].PLoS Comput Biol,2006,2(7):757-768.
[6]  Oldham MC,Horvath S,et al.Conservation and evolution of gene coexpression networks in human and chimpanzee brains[J].Proceedings of the National Academy of Sciences,2006,103(47):17973-17978.
[7]  Zhang B,Li H,et al.Differential dependency network analysis to identify condition-specific topological changes in biological networks[J].Bioinformatics,2009 25(4):526-532.
[8]  Southworth LK,Owen AB,Ki SK.Aging Mice Show a Decreasing Correlation of Gene Expression within Genetic Modules[J].PLOS Genetics,2009,5(12):2264.
[9]  Tesson B,Breitling R,et al.Diffcoex:a simple and sensitive method to find differentially coexpressed gene modules[J].BMC Bioinformatics,2010,11(1):497.
[10]  Fang G,Pandey G,et al.Mining Low-Support Discriminative Patterns from Dense and High-Dimensional Data.Knowledge and Data Engineering[J].IEEE Transactions,2012,24(2),279-294.
[11]  Fang G,Kuang R,et al.Subspace differential coexpression analysis:Problem Definition and a General Approach[C].Pacific Symposium on Biocomputing,2010,15:145-156.
[12]  Przulj N.Biological network comparison using graphlet degree distribution[J].Bioinformatics,2007,23(2):177-183.
[13]  Przulj N,Derek G,et al.Modeling Interactome:Scale-Free or Geometric[J].Bioinformatics,2004,20(18):3508-3515.
[14]  Milenkovic T,Przulj N.Uncovering Biological Network Function via Graphlet Degree Signatures[C].Cancer Inform,2008,6:257-273.
[15]  Kuchaiev O,Milenkovic T,et al.Topological network alignment uncovers biological function and phylogeny[J].Journal of the Royal Society Inferface,2011,5(17):1341-1354.
[16]  Fu CX,Hickey M,et al.Tissue specific and non-specific changes in gene expression by aging and by early stage CR[J].Mechanisms of Ageing and Development,2006,127(12),875-936.
[17]  Jamie L,Barger,et al.A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice[J].PLoS ONE,2008,3(6):2264.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133