全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

时间敏感查询词补全关键技术研究综述

DOI: 10.3969/j.issn.0372-2112.2015.06.018, PP. 1160-1168

Keywords: 时间敏感,查询词补全,信息检索,候选词权值计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

搜索引擎的查询词补全技术给搜索用户提供了较好的用户体验.针对用户检索需求随时间变化而不同这一问题,时间敏感查询词自动补全成为研究热点.时间敏感查询词补全在生成查询词补全候选列表时拟合多种时间因素,呈现出与传统查询词补全不同的特点.本文首先介绍了时间敏感查询词补全的定义和分类,然后从查询词时间敏感类型判断、补全候选词权值计算、候选词排序计算三个步骤分析了关键技术,最后对技术评价方法和技术未来发展难点与热点进行了总结和展望.

References

[1]  Dakka W, Gravano L, Ipeirotis PG.Answering general time-sensitive queries[J].Knowledge and Data Engineering, IEEE Transactions on, 2012;24(2):220-235.
[2]  Fu C-L, Silver D.Time-sensitive Sampling for Spam Filtering[M].Ontario, Canda:Springer, 2004.551-553.
[3]  Shokouhi M, Radinsky K.Time-sensitive query auto-completion[A].Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Portland:ACM, 2012.601-610.
[4]  Zhang R, Chang Y, Zheng Z, Metzler D, Nie J-y.Search result re-ranking by feedback control adjustment for time-sensitive query[A].Proceedings of Human Language Technologies:The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume[C].Boulder:Association for Computational Linguistics, 2009.165-168.
[5]  Efron M.Linear time series models for term weighting in information retrieval[J].Journal of the American Society for Information Science and Technology, 2010, 61(7):1299-1312.
[6]  Dong A, Zhang R, Kolari P, Bai J, Diaz F, Chang Y, et al.Time is of the essence:Improving recency ranking using twitter data[A].Proceedings of the 19th International Conference on World Wide Web[C].Raleigh:ACM, 2010.331-340.
[7]  Radinsky K, Svore K, Dumais S, Teevan J, Bocharov A, Horvitz E.Modeling and predicting behavioral dynamics on the web[A].Proceedings of the 21st International Conference on World Wide Web[C].Portland:ACM, 2012.599-608.
[8]  Bar-Yossef Z, Kraus N.Context-sensitive query auto-completion[A].Proceedings of the 20th International Conference on World Wide Web[C].Hyderabad:ACM, 2011.107-116.
[9]  Bast H, Weber I.Type less, find more:fast autocompletion search with a succinct index[A].Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Seattle:ACM, 2006.364-371.
[10]  Chaudhuri S, Kaushik R.Extending autocompletion to tolerate errors[A].Proceedings of the 35th SIGMOD International Conference on Management of Data[C].Providence:ACM, 2009.707-718.
[11]  Ji S, Li G, Li C, Feng J.Efficient interactive fuzzy keyword search[A].Proceedings of the 18th International Conference on World Wide Web[C].New York:ACM, 2009.371-380.
[12]  Li G, Wang J, Li C, Feng J.Supporting efficient top-k queries in type-ahead search[A].Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Portland:ACM, 2012.355-364.
[13]  Iosif E, Potamianos A.Unsupervised semantic similarity computation between terms using web documents[J].Knowledge and Data Engineering, IEEE Transactions on, 2010, 22(11):1637-1647.
[14]  Hwang H, Lauw HW, Getoor L, Ntoulas A.Organizing user search histories[J].Knowledge and Data Engineering, IEEE Transactions on, 2012, 24(5):912-925.
[15]  Khribi MK, Jemni M, Nasraoui O.Automatic recommendations forelearning personalization based on web usage mining techniques and information retrieval[A].Advanced Learning Technologies, 2008 ICALT''08 Eighth IEEE International Conference on[C].Piscataway:IEEE, 2008.241-245.
[16]  Ono C, Kurokawa M, Motomura Y, Asoh H.A Context-Aware Movie Preference Model Using a Bayesian Network for Recommendation Andpromotion[M].Berlin Heidelberg:Springer, 2007.247-257.
[17]  Xu H-L, Wu X, Li X, Yan B.Comparison study of Internet recommendation system[J].Journal of Software, 2009, 20(2):350-362.
[18]  Yu Z, Zhou X, Zhang D, Chin C-Y, Wang X.Supporting context-aware media recommendations for smart phones[J].Pervasive Computing, IEEE, 2006, 5(3):68-75.
[19]  付博, 赵世奇, 刘挺.Web查询日志研究综述[J].电子学报, 2013, 41(9):1800-1808. Fu Bo, Zhao Shiqi, Liu Ting.Research on analysis and mining of web query logs[J].Acta Electronica Sinica, 2013, 41(9):1800-1808.
[20]  Alfonseca E, Ciaramita M, Hall K.Gazpacho and summer rash:Lexical relationships from temporal patterns of Web search queries[A].Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing[C].Philadelphia:Association for Computational Linguistics, 2009.1046-1055.
[21]  Metzler D, Jones R, Peng F, Zhang R.Improving search relevance for implicitly temporal queries[A].Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Boston:ACM, 2009.700-701.
[22]  Kim HD, Nikitin D, Zhai C, Castellanos M, Hsu M.Informationretrieval with time series query[A].Proceedings of the 2013 Conference on the Theory of Information Retrieval[C].New York:ACM, 2013.14.
[23]  Diaz F.Integration of news content into web results[A].Proceedings of the Second ACM International Conference on Web Search and Data Mining[C].Barcelona:ACM, 2009.182-191.
[24]  K?nig AC, Gamon M, Wu Q.Click-through prediction for news queries[A].Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information retrieval[C].Boston:ACM, 2009.347-354.
[25]  Dong A, Chang Y, Zheng Z, Mishne G, Bai J, Zhang R, et al.Towards recency ranking in web search[A].Proceedings of the Third ACM International Conference on Web Search and Data Mining[C].New York:ACM, 2010.11-20.
[26]  Kanhabua N, N?rv?g K.Determining Time of Queries for Re-Ranking Search Results[M].Berlin Heidelberg:Research and Advanced Technology for Digital Libraries, 2010.261-72.
[27]  Agichtein E, Brill E, Dumais S.Improving web search ranking by incorporating user behavior information[A].Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Seattle:ACM, 2006.19-26.
[28]  Murata M, Toda H, Matsuura Y, Kataoka R, Mochizuki T.Detecting periodic changes in search intentions in a search engine[A].Proceedings of the 19th ACM International Conference on Information and Knowledge Management[C].Toronto:ACM, 2010.1525-1528.
[29]  Anand A, Bedathur S, Berberich K, Schenkel R.Index maintenance for time-travel text search[A].Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Portland:ACM, 2012.235-244.
[30]  Vlachos M, Meek C, Vagena Z, Gunopulos D.Identifying similarities, periodicities and bursts for online search queries[A].Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data[C].New York:ACM, 2004.131-142.
[31]  Keogh EJ, Pazzani MJ.Relevance feedback retrieval of time series data[A].Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Berkeley:ACM, 1999.183-190.
[32]  Wang TD, Deshpande A, Shneiderman B.A temporal pattern search algorithm for personal history event visualization[J].Knowledge and Data Engineering, IEEE Transactions on, 2012, 24(5):799-812.
[33]  Zhang Z-K, Liu C, Zhang Y-C, Zhou T.Solving the cold-start problem in recommender systems with social tags[J].EPL (Europhysics Letters), 2010, 92(2):28002.
[34]  Gantner Z, Drumond L, Freudenthaler C, Rendle S, Schmidt-Thieme L.Learning attribute-to-feature mappings for cold-start recommendations[A].Data Mining (ICDM), 2010 IEEE 10th International Conference on[C].Shenzhen:IEEE, 2010.176-185.
[35]  Blerina Lika, Kostas Kolomvatsos, Stathes Hadjiefthymiades.Facing the cold start problem in recommender systems[J].Expert Syst, 2014, 41(4):2065-2073.
[36]  JLin, KSugiyama, M-Y Kan, T-S Chua.Addressing cold-start in app recommendation:Latent user models constructed from twitter followers[A].36th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2013) [C].Dublin:ACM, 2013.283-292.
[37]  Heping Li, Feng Zhang, Shuwu Zhang.Multi-feature hierarchical topic models for human behavior recognition[J].Science China Information Sciences, 2014, 57(9):1-15.
[38]  Mi Zhang, Jie Tang, Xuchen Zhang, Xiangyang Xue.Addressing cold start in recommender systems:a semi-supervised co-training algorithm[A]. 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR''14) [C].Gold Coast:ACM, 2014.73-82.
[39]  Ke Zhou, Shuang-Hong Yang, Hongyuan Zha.Functional matrix factorizations for cold-start recommendation[A].34th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].New York:ACM, 2011.315-324.
[40]  Berry MW, Browne M.Lecture Notes in Data Mining[M].Singapore:World Scientific, 2006.27-38
[41]  Jones R, Diaz F.Temporal profiles of queries[J].ACM Transactions on Information Systems (TOIS), 2007, 25(3):14.
[42]  Shokouhi M.Detecting seasonal queries bytime-series analysis[A].Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Beijing:ACM, 2011.1171-1712.
[43]  Hamilton JD.TimeSeries Analysis[M].Cambridge:Cambridge University Press.1994.
[44]  Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A.Incorporating contextual information in recommender systems using a multidimensional approach[J].ACM Transactions on Information Systems (TOIS), 2005, 23(1):103-145.
[45]  Adomavicius G, Tuzhilin A.Context-Aware Recommender Systems[M].New York:Springer, 2011.217-253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133