全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于高阶微分的EMD均值计算方法

DOI: 10.3969/j.issn.0372-2112.2015.06.005, PP. 1073-1077

Keywords: 经验模态分解,数值微分,时间序列分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了改善经验模态分解的分离性能,提出一种基于信号高阶微分的分解算法.本文首先讨论了经验模态实现模态分离的必要条件,并证明对输入信号进行偶数阶数值微分可以提高模态分离性能.然后在此基础上提出一种以偶数阶微分的过零点为特征的均值计算方法.最后对仿真信号的分解进行了实验研究.结果表明,本文方法可以改善分离性能,性能提高的程度与理论分析结果符合;与经验模态分解相比,本文方法具有更高的分解精度.

References

[1]  Huang N E, Shen Z, Long S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
[2]  Lei Y, Lin J, He Z, et al.A review on empirical mode decomposition in fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing, 2013, 35(1):108-126.
[3]  Pei S C, Hsiao Y Z, Tzeng M, et al.Uneven illumination removal and image enhancement using empirical mode decomposition[J].Journal of Electronic Imaging, 2013, 22(4):043037-043037.
[4]  Li F, Hu D, Ding C, et al.InSAR Phase Noise Reduction Based on Empirical Mode Decomposition[J].IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1180-1184.
[5]  He D, Li R, Zhu J.Plastic bearing fault diagnosis based on a two-step data mining approach[J].IEEE Transactions on Industrial Electronics, 2013, 60(8):3429-3440.
[6]  田中大, 高宪文, 等.基于EMD与 LS SVM的网络控制系统时延预测方法[J].电子学报, 2014, 42(5):868-874. Tian Zhongda, Gao Xianwen, et al.Time-delay prediction method of networked control system based on EMD and LS-SVM[J].Acta Electronica Sinica, 2014, 42(5):868-874.(in Chinese)
[7]  王文波, 张晓东, 等.基于主成分分析的经验模态分解消噪方法[J].电子学报, 2013, 41(7):1425-1430. Wang Wenbo, Zhang Xiaodong, et al.Empirical mode decomposition de-noising method mased on principal component analysis [J].Acta Electronica Sinica, 2013, 41(7):1425-1430.(in Chinese)
[8]  Roy A, Doherty J F.Raised cosine filter based empirical mode decomposition[J].IET Signal Processing, 2011, 5(2):121-129.
[9]  Kopsinis Y, McLaughlin S.Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach[J].IEEE Transactions on Signal Processing, 2008, 56(1):1-13.
[10]  Hong H, Wang X, Tao Z.Local integral mean-based sifting for empirical mode decomposition[J].IEEE Signal Processing Letters, 2009, 16(10):841-844.
[11]  Schwartz L M.Round-off error[J].Analytical Chemistry, 1980, 52(7):1141-1147.
[12]  Unser M, Aldroubi A, Eden M.B-spline signal processing[J].IEEE Transactions on Signal Processing, 1993, 41(2):821-833.
[13]  Rilling G, Flandrin P, Goncalves P.On empirical mode decomposition and its algorithms[A].IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing[C].Grado:IEEE, 2003.8-11.
[14]  Rilling G, Flandrin P.One or two frequencies? The empirical mode decomposition answers[J].IEEE Transactions on Signal Processing, 2008, 56(1):85-95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133