全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于迭代重赋权最小二乘算法的块稀疏压缩感知

DOI: 10.3969/j.issn.0372-2112.2015.05.014, PP. 922-928

Keywords: 压缩感知,迭代重赋权最小二乘算法,块稀疏信号,误差估计,局部收敛性

Full-Text   Cite this paper   Add to My Lib

Abstract:

压缩感知是一种新颖的信号处理理论.它突破了传统香农采样理论对采样的限制,以信号的稀疏性或可压缩性为基础,实现了信号的高效获取和精确重构.然而在现实中,部分稀疏信号还表现出一些其他结构,典型的例子就是一类块稀疏信号,其非零元素以块的形式出现.针对这类信号,本文研究了求解块稀疏压缩感知的迭代重赋权最小二乘算法(IRLS),给出了该算法的理论分析:误差估计和局部收敛性分析.大量试验验证了基于迭代重赋权最小二乘算法的块稀疏压缩感知策略的有效性.

References

[1]  张海,王尧,常象宇,徐宗本.L1/2正则化[J].中国科学:信息科学,2010,40(3):412-422. Zhang H,Wang Y,Chang X Y,Xu Z B.L1/2 regularization[J].Scientia Sinica Informationis,2010,40(3):412-422.(in Chinese)
[2]  Xu Z B,Guo H L,Wang Y,et al.Representative of L1/2regularization among lq (0
[3]  Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[4]  Candès E J,Tao T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.
[5]  焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,20(7):1651-1662. Jiao L C,Yang S Y,Liu F,Hou B.Development and prospect of compressivesensing[J].Acta Electronica sinica,2011,20(7):1651-1662.(in Chinese)
[6]  石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. Shi G M,Liu D H,Gao D H,et al.Advances in theory and application of compressed sensing[J].Acta Electronica sinica,2009,37(5):1070-1081.(in Chinese)
[7]  Candès E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.
[8]  Candès E J,Plan Y.A probabilistic and RIPless theory of compressed sensing[J].IEEE Transactions on Information Theory,2011,57(11):7235-7254.
[9]  Chartrand R.Exact reconstruction of sparse signals via nonconvex minimization[J].Signal Processing Letters,IEEE,2007,14(10):707-710.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133