全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于正交补空间的遮挡点恢复方法

DOI: 10.3969/j.issn.0372-2112.2015.05.012, PP. 911-915

Keywords: 遮挡点,正交补空间,重投影

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了有效地恢复遮挡点的位置,提出了一种基于正交补空间的遮挡点恢复方法,该方法将图像两两组合,并删除同组中的遮挡点,利用删除遮挡点后的图像组生成的正交补空间之和等于三维空间结构点生成的正交补空间的特性,线性地求解出遮挡点的真实位置.由于该方法的求解是线性的,克服了现有迭代方法需要初值的缺点;同时,该方法将所有的图像及可见图像点都平等地看待.模拟实验和真实实验结果表明,该方法具有鲁棒性好及误差小等优点.

References

[1]  G Bastian,A Mathieu,K Kalin,C Daniel.A super-resolution framework for high-accuracy multiview reconstruction[J].International Journal of Computer Vision,2014,106(2):172-191.
[2]  S Shen.Accurate multiple view 3D reconstruction using patch based stereo for large-scale scenes[J].IEEE Transactions on Image Processing,2013,22(5):1901-1914.
[3]  Y Liu,L Cao,C Liu,Y Pu,H Cheng.Recovering shape and motion by a dynamic system for low-rank matrix approximation in L1 norm[J].The Visual Computer,2013,29(5):421-431.
[4]  M Marques,J Costeira.Estimating 3D shape from degenerate sequences with missing data[J].Computer Vision and Image Understanding,2009,113(2):261-272
[5]  D Jacobs.Linear fitting with missing data for structure-from-motion[J].Computer Vision and Image Understanding,2008,82(1):57-81.
[6]  C H?ne,C Zach,A Cohen,R Angst.Joint 3D scene reconstruction and class segmentation[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Portland Oregon,2013.97-104.
[7]  D Strelow.General and nested Wiberg minimization[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Rhode Island,USA,2012.1584-1591.
[8]  D Alessio.Adaptive non-rigid registration and structure from motion from image trajectories[J].International Journal of Computer Vision,2013,103(2):226-239.
[9]  T Wiberg.Computation of principal components when data are missing[A].Proceedings of the Second Symposium of Computational Statistics[C].Berlin,1976.229-326.
[10]  T Okatani,K Deguchi.On the Wiberg algorithm for matrix factorization in the presence of missing components[J].International Journal of Computer Vision,2007,72(3):329-337
[11]  Y Zheng,S Sugimoto,S Yan,M Okutomi.Generalizing Wiberg algorithm for rigid and nonrigid factorizations with missing components and metric constraints[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Rhode Island,USA,2012.2010-2017.
[12]  A Eriksson,A Hengel.Efficient computation of robust weighted low-rank matrix approximations using the L1 norm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9):1681-1690.
[13]  A Roland,P Marc.Multilinear factorizations for multi-camera rigid structure from motion problems[J].International Journal of Computer Vision,2013,103(2):240-266.
[14]  Z Wen,W Yin,Y Zhang.Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J].Mathematical Programming Computation,2012,4(4):333-361.
[15]  J Yang,X Yuan.Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization[J].Mathematics of Computation,2013,82(281):301-329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133