全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

最小属性约简问题的一个有效的组合人工蜂群算法

DOI: 10.3969/j.issn.0372-2112.2015.05.027, PP. 1014-1020

Keywords: 组合人工蜂群算法,最小属性约简,粗糙集,元启发式方法,局部搜索模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

粗糙集理论中的最小属性约简(MAR)问题是一个NP-难的非线性约束组合优化问题.本文提出一个新的求解MAR问题的组合蜂群算法,其中,引领蜂、跟随蜂和侦察蜂采用基于变异运算的搜索模式,在邻域候选蜜源的生成中引入与属性子集相关的两个度量,并且跟随蜂采用与引领蜂不同的局部搜索策略以提高搜索多样性.此外,在本文算法中,角色分工不同的蜂群以不同的方式利用迄今最好蜜源的信息进行搜索.在若干UCI数据集上的实验及其统计检验结果表明,本文算法在求解质量上优于其他的元启发式属性约简算法,因而可有效地应用于最小属性约简问题的求解.

References

[1]  张腾飞,肖健梅,王锡淮.粗糙集理论中属性相对约简算法[J].电子学报,2005,33(11):2080-2083. Zhang Teng-fei,Xxiao Jian-mei,Wang Xi-huai.Algorithms of attribute relative reduction in rough set theory[J].Acta Electronica Sinica,2005,33(11):2080-2083.(in Chinese)
[2]  苗夺谦,周杰,等.基于代数方程组的属性约简研究[J].电子学报,2010,38(5):1021-1027. Miao Duo-qian,Zhou Jie,et al.Research of attribute reduction based on algebraic equations[J].Acta Electronica Sinica, 2010,38(5):1021-1027.(in Chinese)
[3]  胡峰,王国胤.属性序下的快速约简算法[J].计算机学报,2007,30(8):1429-1435. Hu Feng,Wang Guo-yin.Quick reduction algorithm based on attribute order[J].Chinese Journal of Computers,2007,30(8):1429-1435.(in Chinese)
[4]  杨明.决策表中基于条件信息嫡的近似约简[J].电子学报,2007,35(11):2156-2160. Yang Ming.Approximate reduction based on information reduction in decision tables[J].Acta Electronica Sinica,2007,35(11):2156-2160.(in Chinese)
[5]  叶东毅.Jelonek属性约简算法的一个改进[J].电子学报,2000,28(12):81-82. Ye Dong-yi.An improvement to Jelonek''s attribute reduction algorithm[J].Acta Electronica Sinica,2000,28(12):81-82.(in Chinese)
[6]  Wong S K M,Ziarko W.On optimal decision rules in decision tables[J].Bulletin of Polish Academy of Science,1985,33(11):693-696.
[7]  HedarA R,Wang J.Tabu search for attribute reduction in rough set theory[J].Soft Computing,2008,12(9):909-918.
[8]  Jensen R,Shen Q.Semantics preserving dimensionality reduction:Rough and fuzzy rough-based approaches[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(12):1457-1471.
[9]  Wang X Y,Yang J.et al.Feature selection based on rough sets and particle swarm optimization[J].Pattern Recognition Letters,2007,28(4):459-471.
[10]  Ye D Y,Chen,Z J,Ma S L.A novel and better fitness evaluation for rough set based minimum attribute reduction problem[J].Information Sciences,2013,222(2):223-233.
[11]  Pawlak Z,Slowinski R.Rough set approach to multi-attribute decision analysis[J].European Journal of Operational Research,1994,72(3):443-459.
[12]  Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
[13]  Karaboga D,Basturk B.On the performance of artificial bee colony (ABC) algorithm[J].Applied Soft Computing,2008,8(1):687-697.
[14]  Karaboga D,Basturk B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation,2009,214(1):108-132.
[15]  Gao W F,Liu S F.A modified artificial bee colony algorithm[J].Computers and Operations Research,2012,39(3):687-697.
[16]  Banharnsakun A,Achalakul T,Sirinaovakul B.The best-so-far selection in artificial bee colony algorithm[J].Applied Soft Computing,2010,11(2):2888-2901.
[17]  Singh A.An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem[J].Applied Soft Computing,2009,9(2):625-631.
[18]  Davidovic T,et al.Bee colony optimization for scheduling independent tasks to identical processors[J].Journal of heuristics,2012,18 (4):549-569.
[19]  朱鹏飞,胡清华,于达仁.基于随机化属性选择和邻域覆盖约简的集成学习[J].电子学报,2012,40(2):273-279. Zhu Peng-fei,Hu Qin-hua,Yu Da-ren.Ensemble learning based on randomized attribute selection and neighborhood covering reduction[J].Acta Electronica Sinica,2012,40(2):273-279.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133