全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于多种上下文结构与线性融合的特定敏感视频识别

DOI: 10.3969/j.issn.0372-2112.2015.04.008, PP. 675-683

Keywords: 特定敏感视频,多种上下文结构,分类融合,线性依赖模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文中特定敏感视频是指恐怖和暴力视频,现有的特定敏感视频识别算法或是忽略了视频的多种上下文结构信息;或是忽略了各种特征间潜在的依赖关系.因此,本文提出了一种基于多种上下文结构与线性融合的特定敏感视频识别方法,首先针对某种视频提取多种有效特征,并获取镜头间的上下文结构信息;然后,在每一个特征空间中利用上下文结构训练一个SVM分类器;最后,获取不同特征间的依赖关系,采用线性依赖模型融合多个分类器的结果,提高视频的识别率.在特定敏感视频库上的实验结果验证了该方法比现有的其它算法有更好的性能和稳定性.

References

[1]  Z Rasheed,Y Sheikh,M Shah.On the use of computable features for film classification[J].IEEE Transactions CSVT,2005,15(1):52-64.
[2]  H B Kang.Affective content detection using HMMs[A].Proceedings of the Eleventh ACM International Conference on Multimedia[C].New York:ACM,2003.259-262.
[3]  M Xu,L T Chia,J Jin.Affective content analysis in comedy and horror videos by audio emotional event detection[A].Proceedings of IEEE International Conference on Multimedia and Expo[C].Torino:IEEE,2005.622-625.
[4]  J C Wang,B Li,W M Hu,et al.Horror movie scene recognition based on emotional perception[A].Proceedings of IEEE International Conference on Image Processing[C].Paris:IEEE,2010.1489-1492.
[5]  J C Wang,B Li,W M Hu,et al.Horror video scene recognition via multiple-instance learning[A].Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing[C].Prague:IEEE,2011.1325-1328.
[6]  X M Ding,B Li,W M Hu,et al.Context-aware horror video scene recognition via cost-sensitive sparse coding[A].Proceedings of IEEE International Conference on Pattern Recognition[C].Tsukuba:IEEE,2012.1904-1907.
[7]  丁昕苗,李兵,胡卫明,等.基于多视角融合稀疏表示的恐怖视频识别[J].电子学报,2014,42(2):301-305. X M Ding,B Li,W M Hu,et al.Horror video scene recognition based on multi-view joint sparse coding[J].Acta Electronica Sinica,2014,42(2):301-305.(in Chinese)
[8]  Datta A,Shah M,Lobo NDV.Person-on-person violence detection in video data[A].Proceedings of IEEE International Conference on Pattern Recognition[C].Quebec:IEEE,2002.433-438.
[9]  T Giannakopoulos,D Kosmopoulos,A Aristidou,et al.Violence content classification using audio features[A].Proceedings of the 4th Helenic Conference on AI[C].Heraklion:Springer Berlin Heidelberg,2006.502-507.
[10]  J Nam,M Alghoniemy,A H Tewfik.Audio-visual content-based violent scene characterization[A].Proceedings of IEEE International Conference on Image Processing[C].Chicago:IEEE,1998.353-357.
[11]  J Lin,W Wang.Weakly-supervised violence detection in mo-vies with audio and video based co-training[A].Proceedings of the 10th Pacific Rim Conference on Multimedia[C].Bangkok:Springer Berlin Heidelberg,2009.930-935.
[12]  T Giannakopoulos,A Pikrakis,S Theodoridis.A multimodal approach to violence detection in video sharing sites[A].Proceedings of IEEE International Conference on Pattern Recognition[C].Istanbul:IEEE,2010.3244-3247.
[13]  K Wang,Z Zhang,L Wang.Violence video detection by discriminative slow feature analysis[A].Proceedings of Chinese Conference on Pattern Recognition[C].Beijing:Springer Berlin Heidelberg,2012.137-144.
[14]  L Wen,Z Cai,Z Lei,et al.Robust online learned spatio-temporal context model for visual tracking[J].IEEE Transactions IP,2014,23(2):785-796.
[15]  Z Zhou,Y Sun,Y Li.Multi-instance learning by treating instances as non-i.i.d.samples[A].Proceedings of the 26th Annual International Conference on Machine Learning[C].New York:ACM,2009.1249-1256.
[16]  J Kittler,M Hatef,R P W Duin,et al.On combining classifiers[J].IEEE Transactions PAMI,1998,20(3):226-239.
[17]  A Jain,K Nandakumar,A Ross.Score normalization in multimodal biometric systems[J].Pattern Recognition,2005,38(12):2270-2285.
[18]  A J Ma,P C Yuen,J H Lai.Linear dependency modeling for classifier fusion and feature combination[J].IEEE Transactions PAMI,2013,35(5):1135-1148.
[19]  P Gehler,S Nowozin.On feature combination for multiclass object classification[A].Proceedings of IEEE 12th International Conference on Computer Vision[C].Kyoto:IEEE,2009.221-228.
[20]  U Mahbuba,H Imtiaza,T Roya,et al.A template matching approach of one-shot-learning gesture recognition[J].Pattern Recognition Letters,2013,34(15):1780-1788.
[21]  M A R Ahad,J Tan,H Kim,et al.Action recognition by employing combined directional motion history and energy images[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].San Francisco:IEEE Computer Society,2010.73-78.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133