全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于简化虚拟受力模型的未知复杂环境下群机器人围捕

DOI: 10.3969/j.issn.0372-2112.2015.04.007, PP. 665-674

Keywords: 移动机器人,群机器人,非凸障碍物,简化虚拟受力模型,避碰,队形保持

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对未知非凸和凸以及动态障碍物环境下群机器人围捕,提出了一种基于简化虚拟受力模型的循障和围捕方法.首先给出了目标和动态障碍物的运动模型.然后通过对复杂环境下围捕行为的分解,抽象出简化虚拟受力模型.基于此模型,设计了个体循障和围捕方法,接着证明了系统的稳定性并给出了参数设置范围.仿真结果表明,本文围捕方法可以使群机器人在未知复杂环境下保持较好的围捕队形,并具有良好的避障性能和灵活性,同时分析了与基于松散偏好规则的围捕方法相比的优势.

References

[1]  李,潘启树,周浦城,等.未知环境下多机器人协作追捕算法[J].电子学报,2011,39(3):567-574. Li Jun,Pan Qi-shu,Zhou Pu-cheng,et al.Multi-robot cooperative pursuit algorithm for in an unknown environment[J].Acta Electronica Sinica,2011,39(3):567-574.(in Chinese)
[2]  Xiong J F,Tan G Z.Virtual forces based approach for target capture with swarm robots[A].Proceedings of Control and Decision Conference[C].China:CDC Press,2009.642-646.
[3]  Pimenta L C A,Pereira G A S,Michael N,et al.Swarm coordination based on smoothed particle hydrodynamics technique[J].IEEE Transactions on Robotics,2013,29(2):383-399.
[4]  Ghanaatpishe M,Mousavi S M A,Abedini M,et al.Following,surrounding and hunting an escaping target by stochastic control of swarm in multi-agent systems[A].Proceedings of the 2nd International Conference on Control,Instrumentation and Automation[C].Bandung:IEEE,2011.576-581.
[5]  张勇,巩敦卫,胡滢,等.室内噪声环境下气味源的多机器人微粒群搜索方法[J].电子学报,2014,42(1):70-76. Zhang Yong,Gong Dun-wei,Hu Ying,et al.A PSO-based multi-robot search method for odor source in indoor environment with noise[J].Acta Electronica Sinica,2014,42(1):70-76.(in Chinese)
[6]  Brambilla M,Ferrante E,Birattari M,et al.Swarm robotics:A review from the swarm engineering perspective[J].Swarm Intelligence,2013,7(1):1-41.
[7]  Ni J J,Yang S X.Bioinspired neural network for real-time cooperative hunting by multi-robots in unknown environments[J].IEEE Transactions on Neural Networks,2011,22(12):2062-2077.
[8]  胡俊,朱庆保.基于动态预测目标轨迹和围捕点的多机器人围捕算法[J].电子学报,2011,39(11):2480-2485. Hu Jun,Zhu Qing-bao.A multi-robot hunting algorithm based on dynamic prediction for trajectory of the moving target and hunting points[J].Acta Electronica Sinica,2011,39(11):2480-2485.(in Chinese)
[9]  Sahin E.Swarm Robotics:From Sources of Inspiration to Domains of Application[M].Berlin,Heidelberg:Springer,2005.10-20.
[10]  Phan T A,Russell R A.A swarm robot methodology for collaborative manipulation of non-identical objects[J].The International Journal of Robotics Research,2012,31(1):101-122.
[11]  Cai Z S,Zhao J,Cao J.Formation control and obstacle avoidance for multiple robots subject to wheel-slip[J].International Journal of Advanced Robotic Systems,2012,9(188):1-15.
[12]  Huang T Y,Chen X B,Xu W B,et al.A self-organizing cooperative hunting by swarm robotic systems based on loose-preference rule[J].Acta Automatica Sinica,2013,39(1):57-68.
[13]  Wu M,Huang F F,Wang L,et al.A distributed multi-robot cooperative hunting algorithm based on limit-cycle[A].Proceedings of International Asia Conference on Automation and Robotics in Informatics in Control[C].Bangkok:IEEE,2009.156-160.
[14]  Thrun S,Burgard W,Fox D.Probabilistic Robotics[M].Cambridge,Massachusetts,United States:MIT Press,2005.91-119
[15]  Xu W B,Chen X B,Zhao J,et al.A decentralized method using artificial moments for multi-robot path-planning[J].International Journal of Advanced Robotic Systems,2013,10(24):1-12.
[16]  Muro C,Escobedo R,Spector L,et al.Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations[J].Behavioural Processes,2011,88(3):192-197.
[17]  蔡自兴,肖正,于金霞.基于激光雷达的动态障碍物实时检测[J].控制工程,2008,15(2):200-203. Cai Zi-xing,Xiao Zheng,Yu Jin-xia.Real-time detection of dynamic obstacles based on laser radar[J].Control Engineering of China,2008,15(2):200-203.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133