全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

一种基于稀疏化核方法的红外强杂波背景抑制算法

DOI: 10.3969/j.issn.0372-2112.2015.04.013, PP. 716-721

Keywords: 红外背景抑制,强杂波,背景预测,稀疏,核递推最小二乘

Full-Text   Cite this paper   Add to My Lib

Abstract:

杂波背景抑制一直是红外弱小目标检测面临的难题.背景抑制可分为背景预测和差分滤波两步.针对强杂波背景呈现非线性分布的特征,提出了一种基于稀疏化核递推最小二乘(KRLS)算法的非线性背景抑制算法.算法采用监督学习模型,使用序列图像作为训练样本.通过稀疏化控制学习函数的复杂度并剔除冗余信息,不但可以提高学习机器的推广能力,还可以降低运算量.使用真实红外图像对算法进行了测试,并分析了算法参数.实验结果表明:算法可自适应预测不同类型的强杂波背景,并有效抑制背景杂波.

References

[1]  Stephen J Searle.Background modeling and target segmentation via modified Kalman filtering[A].Proc SPIE 5428,Signal and Data Processing of Small Target 2004[C].SPIE,2004,13-24.
[2]  朱斌,樊祥,马东辉,等.核最小二乘算法检测红外点目标[J].光电工程,2009,36(9):29-34. Bin Zhu,Xiang Fan,Donghui Ma,et al.Infrared point target detection based on kernel least squares algorithm[J].Opto-Electronic Engineering,2009,36(9):29-34.(in Chinese)
[3]  Bin Zhu,Xiang Fan,Donghui Ma,et al.Sequence IR images background estimation algorithm based on kernel exponential weighted least squares[A].Proc SPIE 7495,MIPPR 2009:Automatic Target Recognition and Image Analysis[C].SPIE,2009,doi:10.1117/12.832993.
[4]  Soni T,Zeidler J R,Ku H.Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J].IEEE Trans on Image Processing,1993,2(3):327-340.
[5]  V N Vapnik.Statistical Learning Theory[M].New York:John Wiley & Sons,Inc.1998.
[6]  Yaakov Engel,Shie Mannor,Ron Meir.The kernel recursive least-squares algorithm[J].IEEE Trans on Signal Processing,2004,52(8):2275-2285.
[7]  Bin Zhu,Zhengdong Cheng,Xiang Fan,et al.Online sparse IR background estimation via KRLS[A].2010 IEEE International Conference on Information and Automation(ICIA)[C].IEEE,2010.1123-1127.
[8]  John Shawe-Taylor,Nello Cristianini.Kernel Methods for Pattern Analysis[M].Cambridge University Press,2004.
[9]  Marcelo R P Ferreira,Francisco de A T de Carvalho.Kernel-based hard clustering methods in the feature space with automatic variable weighting[J].Pattern Recognition,2014,47:3082-3095.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133