全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

任意稀疏结构的多量测向量快速稀疏重构算法研究

DOI: 10.3969/j.issn.0372-2112.2015.04.012, PP. 708-715

Keywords: 稀疏重构,任意稀疏结构,多量测向量,贝叶斯组检验,矩阵平滑零范数法

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前的稀疏重构算法求解多量测向量时存在两个问题:一是计算复杂度高;二是不能实现任意稀疏结构的多量测向量重构.为此,本文提出一种多量测向量快速重构算法.该算法首先构建矩阵平滑零范数法,实现对具有任意稀疏结构的多量测向量的重构,并获得多量测向量的初始支撑集;其次根据稀疏度与量测维度的关系,对初始支撑集进行筛选获得预选支撑集;然后采用贝叶斯组检验方式得到信号重构所需的最终支撑集;最后通过最终支撑集实现信号的重构.该算法充分利用了矩阵平滑零范数法的高效性以及贝叶斯组检验对冗余支撑集的剔除功能,不但实现了稀疏位置随机变化的多量测向量的高效重构,而且保证了算法的精度,并对噪声具有一定的鲁棒性,基于实测数据的ISAR成像实验验证了所提算法的有效性.

References

[1]  Y Z Jin,B D Rao.Support recovery of sparse signals in the presence of multiple measurement vectors[J].IEEE Transactions on Information Theory,2013,59(5):3139-3157.
[2]  Z S He,A Cichocki,R Zdunek,et al.Improved FOCUSS method with conjugate gradient iterations[J].IEEE Transactions on Signal Processing,2009,57(1):399-404.
[3]  Z B Xu,X Y Chang,F M Xu,et al.L1/2 regularization:a thresholding representation theory and a fast solver[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(7):1013-1027.
[4]  D L Donoho.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[5]  E J Candès,J Romberg,T Tao.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[6]  G Gui,A Mehbodniya,Q Wan,F Adachi.Sparse signal recovery with OMP algorithm using sensing measurement matrix[J].IEICE Electronics Express,2011,8(5):285-290.
[7]  S F Cotter,B D Rao,K Engan,K Kreutz-Delgado.Sparse solutions to linear inverse problems with multiple measurement vectors[J].IEEE Transactions on Signal Processing,2005,53(7):2477-2488.
[8]  李少东,杨军,马晓岩.基于压缩感知的ISAR高分辨成像算法[J].通信学报,2013,34(9):150-157. Li Shao-dong,Yang Jun,Ma Xiao-yan.High resolution ISAR imaging algorithm based on compressive sensing[J].Journal on Communications,2013,34(9):150-157(in Chinese).
[9]  王伟伟,廖桂生,张磊,等.一种基于压缩感知的稀疏孔径SAR 成像方法[J].电子学报,2012,40(12):2487-2494. Wang wei-wei,Liao Gui-sheng,Zhang Lei,et al.An imaging method based on compressive sensing for sparse aperture of SAR[J].Acta Electronica Sinica,2012,40(12):2487-2494.(in Chinese)
[10]  J Chen,X M Huo.Theoretical results on sparse representations of multiple-measurement vectors[J].IEEE Transactions on Signal Processing,2006,54(12):4634-4643.
[11]  Y C Eldar,H Rauhut.Average case analysis of multichannel sparse recovery using convex relaxation[J].IEEE Transactions on Information Theory,2010,56(1):505-519.
[12]  王法松,张林让,周宇.压缩感知的多重测量向量模型与算法分析[J].信号处理,2012,28(6):785-792. Wang Fa-song,Zhang Lin-rang,Zhou Yu.Multiple measurement vectors for compressed sensing:model and algorithms analysis[J].Signal Processing,2012,28(6):785-792.(in Chinese)
[13]  李少东,杨军,胡国旗.一种改进的压缩感知信号重构算法[J].信号处理,2012,28(5):743-749. Li Shao-dong,Yang Jun,Hu Guo-qi.A modified signal reconstruction algorithm via compressive sensing[J].Signal Processing,2012,28(5):743-749.(in Chinese)
[14]  甘伟,许录平,苏哲,等.基于贝叶斯假设检验的压缩感知重构[J].电子与信息学报,2011,33(11):2640-2646. Gan Wei,Xu Lu-ping,Su Zhe,et al.Bayesian hypothesis testing based recovery for compressed sensing[J].Journal of Electronics & Information Technology,2011,33(11):2640-2646.(in Chinese)
[15]  G H Mohimani,M B Zadeh,C Jutten.A fast approach for over-complete sparse decomposition based on smoothed L0 norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
[16]  D Wei,O Milenkovic.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
[17]  赵树杰,赵建勋.信号检测与估计理论[M].北京:清华大学出版社,2009.66-148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133