全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于DIVA模型的脑电信号去噪方法研究

DOI: 10.3969/j.issn.0372-2112.2015.04.011, PP. 700-707

Keywords: DIVA模型,脑电信号,噪声,稀疏分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑电信号获取过程中,工频噪声干扰现象往往会使所获取的信息产生多种多形态瞬时结构波形,这种现象影响到DIVA(DirectionsIntoVelocitiesofArticulators)模型对语音的正常处理.为此,本文提出了一种面向特征提取的脑电信号结构自适应稀疏分解模型,并在此基础上,通过采用匹配追踪算法求解最佳原子、使用过完备原子库中原子表示原始脑电信号等方法,实现了信号去噪的目的,效果好于传统的小波变换去噪方法.仿真实验表明,本文提出的方法提高了DIVA模型语音发音的精度.

References

[1]  Brumberg JS,Nieto Castanon A,Kennedy PR,Guenther FH.Brain-computer interfaces for speech communication[J].Speech Communication,2010,52(4):367-379.
[2]  Tourville JT,Guenther FH. The DIVA model:a neural theory of speech acquisition and production[J].Language and Cognitive Processes,2011,25(7):952-981.
[3]  杜晓燕,等.脑电信号伪迹去除的研究进展[J].生物医学工程学杂志,2008,25(2):464-471. Du Xiaoyan,et al.Removal of artifacts from EEG signal[J].Journal of Biomedical Engineering,2008,25(2):464-471.(in Chinese)
[4]  于霞,刘建昌,李鸿儒.一种变步长凸组合自适应滤波器及其均方性能分析[J].电子学报,2010,38(2):480-484. Yu Xia,Liu Jian-chang,Li Hong-ru.A convex combination of variable step-size adaptive filter and its mean-square performance analysis[J].Acta Electronica Sinica,2010,38(2):480-484.(in Chinese)
[5]  徐宝国,宋爱国,费树岷.在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,38(5):1025-1035. Xu Bao-guo,Song Ai-guo,Fei Shu-min.Feature extraction and classification of EEG in online brain-computer interface[J].Acta Electronica Sinica,2011,38(5):1025-1035.(in Chinese)
[6]  Stepphanc Mallat,Zhifeng Zhang.Matching pursuit with time-frequency dictionaries dictionaries[J].IEEE Trans on Signal Processing,1993,41(12):3397-3415.
[7]  Chen S,Donoho D,Saunders M.Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1998,20:33-61.
[8]  Shaobai zhang,Xin zhang.An improved phonetic learning algorithm based on the DIVA model[J].Lecture Notes in Electrical Engineering,2011,123(12):495-500.
[9]  Shaobai zhang,Liqin gao.Application of feedforward and feedback control strategy in the speech acquisition and production model[J].Lecture Notes in Electrical Engineering,2011,123(2):489-494.
[10]  Guenther FH.Cortical interactions underlying the production of speech sounds[J].Journal of Communication Disorders,2006,39(5):350-365.
[11]  Bohland JW,Guenther FH.An fMRI investigation of syllable sequence production[J].NeuroImage,2006,32(2):821-841.
[12]  Coifman R,Wickerhauser M.Entropy-based algorithms for best basis selection[J].IEEE Transactions on Information Theory,1992,38:713-718.
[13]  Cai T Tony,Wang Lie.Orthogonal matching pursuit for sparse signal recovery with noise[J].IEEE Transactions on Information Theory,2011,57(7):4680-4688.
[14]  张春梅,尹忠科,肖明霞.基于冗余字典的信号过完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. Zhang chunmei,Yin zhongke,Xiao Mingxia.Over complete representation and sparse decomposition of signal based on the redundant dictionary had[J].Chinese Science Bulletin,2006,51(6):628-633.(in Chinese)
[15]  Davis G,Mallat S,Avellaneda M.Adaptive greedy approximation[J].Constr Approx,1997,13(1):57-98.
[16]  Donoho,X Huo.Uncertainty principles and ideal atomic decomposition[J].IEEE Trans Information Theory,2001,47(7):2845-2862.
[17]  吴敏.基于稀疏表示模型的EEG信号棘波自检测技术与应用系统研究[D].江苏南京:南京理工大学,2010.8. Wu min.Automatic detection of epileptic characteristics in EEG signals based on sparse representation and the design of an application system[D].Nanjing,Jiangsu:Nanjing University of Science and Technology,2010.8.(in Chinese)
[18]  Mor Etai,Azoulay Amnon,Aladjem Mayer.A matching pursuit method for approximating over lapping ultrasonic echoes[J].IEEE Trans Ultrason Ferroelectr Freq Control,2010,57(9):1996-2004.
[19]  Guenther FH,Brumberg JS,Wright EJ,Nieto Castanon.A wireless brain-machine interface for real-time speech synthesis[J].PLoS ONE,2009,4(12):e8218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133