全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

图空间上彩色矢量形态学算子

DOI: 10.3969/j.issn.0372-2112.2015.03.002, PP. 424-430

Keywords: 矢量排序,完备格,图论,极值提取算法,拓扑结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有彩色图像形态学矢量排序算法的缺点,将基于图的二值及灰度形态学扩展到彩色图像,在具备完备格的图空间上定义一种新的彩色矢量形态学算子.为使新算子便于实现,结合图论定义最小生成矢量子图函数及相关理论,并在此基础上提出彩色矢量形态学极值提取算法.实验结果表明,该算子在保存彩色信息的完整及关联性方面优于现有的彩色形态学,避免出现"假色"现象及人为决定主导颜色分量的缺点,同时有效地保护了原图像的纹理不发生较大的变化,较好的保存图像的拓扑结构,有较广的应用前景.

References

[1]  Fernandez-Maloigne C.Advanced Color Image Processing and Analysis[M].New York:Springer, 2013.1-18.
[2]  Witte V D, Schulte S, Nachtegael M, et al.Vector morphological operators for colour images[J].Proceedings of the 2nd International Conference on Image Analysis and Recognition, ICIAR 2005[C].Heidelberg:Springer Verlag, 2005.667-675.
[3]  Serra J.Image Analysis and Mathematical Morphology[M].London:Academic Press, 1983.15-24.
[4]  Braga-Neto U, Goutsias J.Connectivity on complete lattices:new results[J].Comput Vision Image Understanding, 2002, 85(1):22-53.
[5]  Anglulo J.Morphological colour operators in totally ordered lattices based on distance:application to image filtering, enhancement and analysis[J].Comput Vision Image Understanding, 2007, 107(1-2):56-73.
[6]  Luengo-Oraz M A, Faure E, Angulo J.Robust iris segmentation on uncalibrated noisy images using mathematical morphology[J].Image and Vision Computing, 2010, 28(2):278-284.
[7]  Angulo J.Morphological color processing based on distances.application to color denoising and enhancement by centre and contrast operators[A].Proceedings of the 5th IASTED International Conference on Visualization, Imaging, and Image Processing, VIIP 2005[C].Calgary:Acta Press, 2005.314-319.
[8]  Lukac R, Smolka B, Martin K, et al.Vector filtering for color imaging[J].IEEE Signal Process Mag, 2005, 22(1):74-86.
[9]  Najman L, Talbot H.Mathematical Morphology:From Theory to Applications[OL].http://onlinelibrary.wiley.com/book/10.1002/9781118600788, 2013-2-13.
[10]  Theoharatos Ch, Economou G, Fotopoulos S.Color edge detection using the minimal spanning tree[J].Pattern Recogn, 2005, 38(4):603-606.
[11]  Lézoray O, Grady L.Image Processing and Analysis with Graphs:Theory and Practice[M].Boca Raton:CRC Press, 2012.141-169.
[12]  Aptoula E, Lefévre S.A comparative study on multivariate mathematical morphology[J].Pattern Recogn, 2007, 40(11):2914-2929.
[13]  Aptoula E, Lefévre S.On lexicographical ordering in multivariate mathematical morphology[J].Pattern Recogn Lett, 2008, 29(2):109-118.
[14]  Louverdis G, Vardavoulia M I, Andreadis I, et al.A new approach to morphological color image processing[J].Pattern Recogn, 2002, 35(8):1733-1741.
[15]  Angulo J.Geometric algebra color image representations and derived total orderings for morphological operators part I:colour quaternions[J].J Visual Commun Image Represent, 2010, 21(1):33-48.
[16]  Goutsias J, Heijmans H J A M, Sivakumar K.Morphological operators for image sequences[J].Comput Vis Image Underst, 1995, 62(3):326-346.
[17]  雷涛, 樊养余, 王毅.基于四元数表达的模糊矢量形态学算子[J].中国科学:信息科学, 2013, 43(7):853-871.
[18]  Lézoray O, Meurie C, Elmoataz A.Mathematical morphology in any color space[A].Proceedings of the 2007 14th International Conference on Image Analysis Processing Workshops, ICIAP 2007[C].Piscataway:IEEE, 2007.174-178.
[19]  O''Regan G.Graph theory[A].Mathematics in Compting[C].London:Springer, 2013.267-275.
[20]  Felzenszwalb P F, Huttenlocher D P.Efficient graph-based image segmentation[J].Int J Comput Vision, 2004, 59(2):167-181.
[21]  Felzenszwalb P F, Zabih R.Dynamic programming and graph algorithms in computer vision[J].IEEE Trans Pattern Anal Mach Intell, 2011, 33(4):721-740.
[22]  Cousty J, Najman L, Dias F, Serra J.Morphological filtering on graphs[J].Comput Vision Image Understanding, 2013, 117(4):370-385.
[23]  Dias F, Cousty J, Najman L.Some morphological operators on simplicial complex spaces[A].Proceedings of the 16th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2011[C].Heidelberg:Springer Verlag, 2011.441-452.
[24]  Bloch I, Bretto A.Mathematical morphology on hypergraphs:preliminary definitions and results[A].Proceedings of the 16th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2011[C].Heidelberg:Springer Verlag, 2011.429-440.
[25]  Cousty J, Bertrand G, Najman L, Couprie M.Watershed cuts:minimum spanning forests and the drop of water principle[J].IEEE Trans Pattern Anal Mach Intell, 2009, 31(8):1362-1374.
[26]  Cousty J, Bertrand G, Najman L, Couprie M.Watershed cuts:thinnings, shortest path forests, and topological watersheds[J].IEEE Trans Pattern Anal Mach Intell, 2010, 32(5):925-939.
[27]  Cousty J, Najman L, Serra J.Some morphological operators in graph spaces[A].Proceedings of the 9th International Symposium on Mathematical Morphology and Its Application to Signal and Image Processing, ISMM 2009[C].Heidelberg:Springer Verlag, 2009.149-160.
[28]  Heijmans H, Vincent L.Graph morphology in image analysis [A].Dougherty E.Mathematical Morphology in Image Processing[C].New York:Marcel-Dekker Inc, 1992.171-203.
[29]  Lezoray O, Charrier C, Elmoataz A.Learning graph neighborhood topological for image and manifold morphological processing[A].Proceedings of the 2008 IEEE 8th International Conference on Computer and Information Technology, CIT 2008[C].Piscataway:IEEE, 2008.350-355.
[30]  Lezoray O, Meurie C, Elmoataz A.A graph approach to color mathematical morphology[A].Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology[C].Piscataway:IEEE, 2006.856-861.
[31]  Stawiaski J, Meyer F.Minimum spanning tree adaptive image filtering[A].Proceedings of the 2009 16th IEEE International Conference on Image Processing, ICIP 2009[C].Piscataway:IEEE, 2009.2245-2248.
[32]  Angulo J.Hypercomplex mathematical morphology[J].J Math Imaging Vis, 2011, 41(1-2):86-108.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133