全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Counter Current Flow Limitation of Gas-Liquid Two-Phase Flow in Nearly Horizontal Pipe

DOI: 10.1155/2012/513809

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experimental work about counter current two-phase flow of air and gas in nearly horizontal pipe has been performed. The work was performed in a 1.1?m long circular transparent acrylic pipe with 50?mm inner diameter, in two inclination angle settings (20° and 10° from horizontal). The smooth liquid and air inlet was used. Porous liquid inlet and a nozzle connected with calm section were used as liquid and gas inlet. The effect of liquid properties is examined by using five different working fluids (Water, two different concentration of butanol and glycerin aqua solutions). As for results. (1) CCFL causes a drastic change in the delivered liquid to the lower plenum. (2) The effect of inclination angle is significantly observed. The flooding gas superficial velocity decreases with inclination angle. (3) The liquid viscosity affects the flooding phenomena. 1. Introduction Counter current flow in vertical tube has many applications in a diverse range of process industries. The phenomenon of flooding is of considerable technological importance, as flooding can be limiting factor in the operation of equipment. For example, in a pressurized water reactor (PWR), the counter-current flow of steam (upward) and cold water (downward) may take place in vertical channels when the emergency core cooling (ECC) water is injected into the reactor vessel. This leads to complex processes including the condensation of steam due to the introduction of cold water in to the reactor core. Most importantly upward steam flow may prevent sufficient cooling of reactor component by ECC water. Flooding phenomena have been studied in order to develop analytical models to predict the onset of flooding velocity. As a result, a large number of correlations have been proposed in the literature to predict it for given set of condition. In spite of the large number of reported results, there is still considerable uncertainty concerning the phenomena at the onset of flooding. A previous work by Wallis [1] who studied counter current of liquid-gas flow in vertically channel found the inversely proportional relationship of the liquid and gas velocity. To provide a further observation, Hewitt [2] and Barnea et al. [3] performed an experiment in inclined pipe and showed the effect of inclination angle. They found that the effect of inclination angle is complicated. The flow rate at which flooding occurs increases and then decreases as the inclination angle is changed from horizontal to vertical. In the other hand, Pantzali et al. [4] showed the tendency of the flooding gas flow rate increase with

References

[1]  G. B. Wallis, One-Dimensional Two-Phase Flow, chapter 11, McGraw Hill, NewYork, NY, USA, 1969.
[2]  G. F. Hewitt, “Influence of end conditions, tube inclination and physical properties on flooding in gas liquid flows,” Harwell Report HTFS-RS 222, 1977.
[3]  D. Barnea, N. Ben Yoseph, and Y. Taitel, “Flooding in inclined pipes: effect of entrance section,” Canadian Journal of Chemical Engineering, vol. 64, no. 2, pp. 177–184, 1986.
[4]  M. A. Pantzali, A. A. Mouza, and S. V. Paras, “Study of hydrodynamic characteristics of the liquid layer during counter-current flow in inclined small diameter tubes: the effect of liquid properties,” in Proceedings of the 6th International Conference on Multiphase Flow (ICMF '07), Leipzig, Germany, 2007.
[5]  S. Kamei, J. Onishi, and T. Okane, “Flooding in a wetted wall tower,” Chemical Engineering, vol. 18, pp. 364–368, 1954.
[6]  S. Suzuki and T. Ueda, “Behaviour of liquid films and flooding in counter-current two-phase flow-part 1. flow in circular tubes,” International Journal of Multiphase Flow, vol. 3, no. 6, pp. 517–532, 1977.
[7]  A. Ousaka, Deendarlianto, A. Kariyasaki, and T. Fukano, “Prediction of flooding gas velocity in gas—liquid counter-current two-phase flow in inclined pipes,” Nuclear Engineering and Design, vol. 236, no. 12, pp. 1282–1292, 2005.
[8]  K. S. Chung, C. P. Liu, and C. L. Tien, “Flooding in two-phase countercurrent flows-II: experimental investigation,” Physicochemical Hydrodynamics, vol. 1, pp. 209–220, 1980.
[9]  A. Zapke and D. G. Kr?ger, “The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes,” International Journal of Multiphase Flow, vol. 22, no. 3, pp. 461–472, 1996.
[10]  R. Clift, C. L. Pritchard, and R. M. Nedderman, “The effect of viscosity on the flooding conditions in wetted wall columns,” Chemical Engineering Science, vol. 21, no. 1, pp. 87–95, 1966.
[11]  C. L. Tien and C. P. Liu, “Survey on vertical two phase counter-current flooding,” EPRINP-984, 1979.
[12]  A. A. Mouza, S. V. Paras, and A. J. Karabelas, “Incipient flooding in inclined tubes of small diameter,” International Journal of Multiphase Flow, vol. 29, no. 9, pp. 1395–1412, 2003.
[13]  T. Nariai, A. Tomiyama, C. Vallée, D. Lucas, I. Kinoshita, and M. Murase, “Counter-current flow limitation in a scaled-down model of a PWR hot leg,” in Proceedings of the International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8) N8P0109, pp. 10–14, Shanghai, China, 2010.
[14]  Deendarlianto, A. Ousaka, A. Kariyasaki, T. Fukano, and M. Konishi, “The effects of surface tension on the flow pattern and counter-current flow limitation (CCFL) in gas-liquid two-phase flow in an inclined pipe,” Japanese Journal of Multiphase Flow, vol. 18, pp. 337–350, 2004.
[15]  G. P. Celata, M. Cumo, and T. Setaro, “A data set of flooding in circular tubes,” Experimental Thermal and Fluid Science, vol. 5, no. 4, pp. 437–447, 1992.
[16]  H. Beckmann and D. Mewes, “Experimental studies of countercurrent flow in inclined tubes,” in Proceedings of the European Two Phase Flow Group Meeting, p. B1, Rome, Italy, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133