全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

迁移组概率学习机

DOI: 10.3969/j.issn.0372-2112.2013.11.015, PP. 2207-2215

Keywords: 迁移学习,分类,支持向量机,组概率

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于组概率的学习方法因其能够很好地保护数据的隐私性而成为近年来机器学习领域的研究热点.已有的组概率学习方法虽然取得了一定的效果,但是在模型训练时仅考虑单一的场景信息,如果在当前领域所采集的数据信息有限,则在当前领域下建立的分类模型泛化能力较差.针对此问题,提出了一种基于组概率和结构风险最小化模型的迁移组概率学习机(TGPLM).该方法通过构造领域相似距离项来引入历史领域的先验知识,提出了针对类标签保护数据的增强型分类器优化目标学习准则,以期在有效利用当前领域数据类标签组概率信息的同时借鉴历史领域相关知识来指导当前领域下的学习任务.基于模拟、UCI及PIE人脸等数据集上的实验结果表明,本文所提之方法是有效的.

References

[1]  Rüping S.SVM classifier estimation from group probabilities[A].Proceedings of 27th ICML[C].Haifa,2010:911-918.
[2]  Quadrianto N,Smola A J,Caetano T S,et al.Estimating labels from label proportion s[J].Journal of Machine Learning Research,2009,(10):2349-2374.
[3]  韩建民,于娟,虞慧群,贾.面向敏感值的个性化隐私保护[J].电子学报,2010,38(7):1723 -1728. Han J M,Yu J,Yu H Q,Jia J.Individuation privacy preservation oriented to sensiti ve values[J].Acta Electronica Sinica,2010,38(7):1723-1728.(in Chinese)
[4]  胡文军,王士同.隐私保护的SVM快速分类方法[J].电子学报,2012,40(2):280-286. HU W J,WANG S T.Fast classification approach of support vector machine with priv acy preservation[J].Acta Electronica Sinica.2012,40(2):280-286.(in Chinese)
[5]  蒋亦樟,邓赵红,王士同.ML型迁移学习模糊系统[J].自动化学报,2012,38(9):1393-1409. Jiang Y Z,Deng Z H,Wang S T.Mamdani-larsen type transfer learning fuzzy system[J].Acta Automatica Sinica,2012,38(9):1393-1409.(in Chinese)
[6]  于重重,田蕊,谭励,涂序彦.非平衡样本分类的集成迁移学习算法[J].电子学报,2012,40(7 ):1358-1363. Yu C C,Tian R,Tan L,Tu X Y.Integrated transfer learning algorithmic for unbalanc ed samples classification[J].Acta Electronica Sinica,2012,40(7):1358-1363.(in Chinese)
[7]  Gao J,Fan W,Jiang J,Han J W.Knowledge transfer via multiple model local structur e mapping[A].Proceedings of the 14th ACM SIGKDD International Conference on Kn owledge Discovery and Data Mining[C].New York,USA:ACM,2008.283-291.
[8]  Quanz B,Huan J.Large margin transductive transfer learning[A].Proceedings of t he 18th ACM conference on Information and knowledge management[C].New York,USA :ACM,2009.1327-1336.
[9]  Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verla g,1995.123-167.
[10]  Sun S L.Multi-view Laplacian Support Vector Machines[A].Proceedings of the 7t h international conference on Advanced Data Mining and Applications[C].Beijing ,China,2011:209-222.
[11]  Scholkopf B,Herbrich R,Smola A J.A generalized representer theorem[A].Proceedi ngs of Conference on Learning Theory[C].Amsterdam:Springer Press,2001.416-426.
[12]  [LL] 邓乃杨,田英杰.数据挖掘的新方法——支持向量机[M].北京:科学出版杜,2004. Deng N Y,Tian Y J.New Method in Data Mining:Support Vector Machine[M].Beijing. China:Science Press,2004.(in Chinese)
[13]  Stolpe M,Morik K.Learning from Label Proportions by Optimizing Cluster Model Sel ection[A].ECML PKDD 2011[C].Berlin,Heidelberg,2011,Part III,Vol.6913,349-3 64.
[14]  Quadrianto N,Smola A J,Caetano T S,et al.Estimating labels from label proportion s[A].Proceedings of 25th ICML[C].Omnipress,2008.776-783.
[15]  张战成,王士同,钟富礼.具有隐私保护功能的协作式分类机制[J].计算机研究与发展,2011 ,48(06):1018-1029. Zhang Z C,Wang S T,Fu L C.Collaborative classification mechanism for privacy-pr eserving[J].Journal of Computer Research and Development.2011,48(6):1018-1028. (in Chinese).
[16]  Tao J W,Chung F L,Wang S T,On Minimum distribution discrepancy support vector ma chine for domain adaptation[J].Pattern Recognition,2012,45(11):3962-3984.
[17]  洪佳明,印鉴,黄云,等.一种基于领域相似性的迁移学习算法[J].计算机研究与发展,2011, 48(10):1823-1830. Hong J M,Yin J,Huang Y,et al.TrSVM:A transfer learning algorithm using domain si milarity[J].Journal of Computer Research and Development,2011,48(10):1823-1830 .(in Chinese)
[18]  Platt J C.Probabilistic outputs for support vector machines and comparisons to r egularized likelihood methods[A].Advances in Large Margin Classifiers[C].Cam bridge:MIT Press,1999.61-74.
[19]  Caruana R and Niculescu M A.Predicting good probabilities with supervised learni ng[A].Proceedings of the 22nd International Conference on Machine Learning[C ].Bonn,Germany,2005.625-632.
[20]  Xiang E W,Cao B,Hu D H,Yang Q.Bridging domains using world wide knowledge for tr ansfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22 (6):770-783.
[21]  Bruzzone L,Marconcini M.Domain adaptation problems:A DASVM classification techni que and a circular validation strategy[J].IEEE Transactions on Pattern Analysi s and Machine Intelligence,2010,32(5):770-787.
[22]  Bickel S.ECML-PKDD Discovery Challenge 2006 Overview[A].Proceedings.ECML/PKDD Discovery Challenge Workshop[C].Berlin,Germany,2006.
[23]  He X F,Cai D,Partha N.Laplacian score for feature selection[A].Advances in Ne ural Information Processing Systems18[C].M A:MIT Press,2006.507-514.
[24]  Vapnik V.Statistical Learning Theory[M].John Wiley and Sons,1998.
[25]  Joachims T.Transductive inference for text classification using support vector m achines[A].Proceedings of 16th Inter-national Conference on Machine Learning[C].San Francisco,CA:Morgan Kaufmann Publishers,1999.200-209.
[26]  Chang C C,Lin C J.LIBSVM:A library for support vector machines[J/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm,2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133