Rüping S.SVM classifier estimation from group probabilities[A].Proceedings of 27th ICML[C].Haifa,2010:911-918.
[2]
Quadrianto N,Smola A J,Caetano T S,et al.Estimating labels from label proportion s[J].Journal of Machine Learning Research,2009,(10):2349-2374.
[3]
韩建民,于娟,虞慧群,贾.面向敏感值的个性化隐私保护[J].电子学报,2010,38(7):1723 -1728. Han J M,Yu J,Yu H Q,Jia J.Individuation privacy preservation oriented to sensiti ve values[J].Acta Electronica Sinica,2010,38(7):1723-1728.(in Chinese)
[4]
胡文军,王士同.隐私保护的SVM快速分类方法[J].电子学报,2012,40(2):280-286. HU W J,WANG S T.Fast classification approach of support vector machine with priv acy preservation[J].Acta Electronica Sinica.2012,40(2):280-286.(in Chinese)
[5]
蒋亦樟,邓赵红,王士同.ML型迁移学习模糊系统[J].自动化学报,2012,38(9):1393-1409. Jiang Y Z,Deng Z H,Wang S T.Mamdani-larsen type transfer learning fuzzy system[J].Acta Automatica Sinica,2012,38(9):1393-1409.(in Chinese)
[6]
于重重,田蕊,谭励,涂序彦.非平衡样本分类的集成迁移学习算法[J].电子学报,2012,40(7 ):1358-1363. Yu C C,Tian R,Tan L,Tu X Y.Integrated transfer learning algorithmic for unbalanc ed samples classification[J].Acta Electronica Sinica,2012,40(7):1358-1363.(in Chinese)
[7]
Gao J,Fan W,Jiang J,Han J W.Knowledge transfer via multiple model local structur e mapping[A].Proceedings of the 14th ACM SIGKDD International Conference on Kn owledge Discovery and Data Mining[C].New York,USA:ACM,2008.283-291.
[8]
Quanz B,Huan J.Large margin transductive transfer learning[A].Proceedings of t he 18th ACM conference on Information and knowledge management[C].New York,USA :ACM,2009.1327-1336.
[9]
Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verla g,1995.123-167.
[10]
Sun S L.Multi-view Laplacian Support Vector Machines[A].Proceedings of the 7t h international conference on Advanced Data Mining and Applications[C].Beijing ,China,2011:209-222.
[11]
Scholkopf B,Herbrich R,Smola A J.A generalized representer theorem[A].Proceedi ngs of Conference on Learning Theory[C].Amsterdam:Springer Press,2001.416-426.
[12]
[LL] 邓乃杨,田英杰.数据挖掘的新方法——支持向量机[M].北京:科学出版杜,2004. Deng N Y,Tian Y J.New Method in Data Mining:Support Vector Machine[M].Beijing. China:Science Press,2004.(in Chinese)
[13]
Stolpe M,Morik K.Learning from Label Proportions by Optimizing Cluster Model Sel ection[A].ECML PKDD 2011[C].Berlin,Heidelberg,2011,Part III,Vol.6913,349-3 64.
[14]
Quadrianto N,Smola A J,Caetano T S,et al.Estimating labels from label proportion s[A].Proceedings of 25th ICML[C].Omnipress,2008.776-783.
[15]
张战成,王士同,钟富礼.具有隐私保护功能的协作式分类机制[J].计算机研究与发展,2011 ,48(06):1018-1029. Zhang Z C,Wang S T,Fu L C.Collaborative classification mechanism for privacy-pr eserving[J].Journal of Computer Research and Development.2011,48(6):1018-1028. (in Chinese).
[16]
Tao J W,Chung F L,Wang S T,On Minimum distribution discrepancy support vector ma chine for domain adaptation[J].Pattern Recognition,2012,45(11):3962-3984.
[17]
洪佳明,印鉴,黄云,等.一种基于领域相似性的迁移学习算法[J].计算机研究与发展,2011, 48(10):1823-1830. Hong J M,Yin J,Huang Y,et al.TrSVM:A transfer learning algorithm using domain si milarity[J].Journal of Computer Research and Development,2011,48(10):1823-1830 .(in Chinese)
[18]
Platt J C.Probabilistic outputs for support vector machines and comparisons to r egularized likelihood methods[A].Advances in Large Margin Classifiers[C].Cam bridge:MIT Press,1999.61-74.
[19]
Caruana R and Niculescu M A.Predicting good probabilities with supervised learni ng[A].Proceedings of the 22nd International Conference on Machine Learning[C ].Bonn,Germany,2005.625-632.
[20]
Xiang E W,Cao B,Hu D H,Yang Q.Bridging domains using world wide knowledge for tr ansfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22 (6):770-783.
[21]
Bruzzone L,Marconcini M.Domain adaptation problems:A DASVM classification techni que and a circular validation strategy[J].IEEE Transactions on Pattern Analysi s and Machine Intelligence,2010,32(5):770-787.
He X F,Cai D,Partha N.Laplacian score for feature selection[A].Advances in Ne ural Information Processing Systems18[C].M A:MIT Press,2006.507-514.
[24]
Vapnik V.Statistical Learning Theory[M].John Wiley and Sons,1998.
[25]
Joachims T.Transductive inference for text classification using support vector m achines[A].Proceedings of 16th Inter-national Conference on Machine Learning[C].San Francisco,CA:Morgan Kaufmann Publishers,1999.200-209.
[26]
Chang C C,Lin C J.LIBSVM:A library for support vector machines[J/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm,2001.