全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

一种面向高维数据挖掘的隐私保护方法

DOI: 10.3969/j.issn.0372-2112.2013.11.012, PP. 2187-2192

Keywords: 隐私保护,高维数据挖掘,哈希技术,随机投影,安全子空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决隐私保护数据挖掘中的维数灾难问题,提出了一种基于随机投影技术的隐私保护方法.该方法考虑了攻击者可以通过推测随机投影矩阵重建原始数据的情况,首先提出了安全子空间和安全子空间映射的概念,然后利用通用哈希函数生成的随机投影矩阵构造了一个安全子空间映射,实现低失真嵌入的同时保证了数据的安全,最后证明了安全子空间能够保护原始数据间的欧式距离和内积.实验结果表明,在保护数据隐私的前提下,该方法能够有效的保证数据挖掘应用中的数据质量.

References

[1]  L Sweeney.K-anonymity:A model for protecting privacy[J].International Journal of Uncertainty Fuzziness and Knowledge Based Systems,2002,10(5):557-570.
[2]  王波,杨静.一种基于逆聚类的个性化隐私匿名方法[J].电子学报,2012,40(5):883-890. Wang Bo,Yang Jing.A personalized privacy anonymous method based on inverse clustering[J].Acta Electronica Sinica,2012,40(5):883-890.(in Chinese)
[3]  S Lee,M G Genton,R B Arellano-Valle.Perturbation of numerical confidential data via skew-t distributions[J].Management Science,2010,56(2):318-333.
[4]  张锋,孙雪冬,常会友等.两方参与的隐私保护协同过滤推荐研究[J].电子学报,2009,37(1):84-89. Zhang Feng,Sun Xue-Dong,Chang Hui-You.Research on privacy-preserving two-party collaborative filtering recommendation[J].Acta Electronica Sinica,2009,37(1):84-89.(in Chinese)
[5]  C C Aggarwal.On randomization,public information and the curse of dimensionality[A].Proceedings of 23rd International Conference on Data Engineering[C].Istanbul:IEEE,2007,136-145.
[6]  K Liu,H Kargupta,J Ryan.Random projection-based multiplicative data perturbation for privacy preserving distributed data mining[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(1):92-106.
[7]  C C Aggarwal,P S Yu.On privacy-preservation of text and sparse binary data with sketches[A].Proceedings of the Seventh SIAM International Conference on Data Mining[C].Minnesota:SIAM,2007.57-67.
[8]  W B Johnson,J Lindenstrauss.Extensions of lipschitz mappings into a hilbert space[J].Contemporary Mathematics,1984,26:189-206.
[9]  M Dietzfelbinger,T Hagerup,J Katajainen,M Penttonen.A reliable randomized algorithm for the closest-pair problem[J].Journal of Algorithms,1997,25(1):19-51.
[10]  C C Aggarwal,P S Yu.A General Survey of Privacy-preserving Data Mining Models and Algorithms[M].NewYork:Springer US,2008.11-52.
[11]  韩建民,岑婷婷,虞慧群,等.数据表k-匿名化的微聚集算法研究[J].电子学报,2008,36(10):2021-2029. Han Jian-min,Cen Ting-ting,Yu Hui-qun,et al.Research in microaggregation algorithms for k-anonymization[J].Acta Electronica Sinica,2008,36(10):2021-2029.(in Chinese)
[12]  李光,王亚东.一种改进的基于奇异值分解的隐私保持分类挖掘方法[J].电子学报,2012,40(4):739-744. Li Guang,Wang Ya-Dong.An improved privacy-preserving classification mining method based on singular value decomposition[J].Acta Electronica Sinica,2012,40(4):739-744.(in Chinese)
[13]  K K Chen,L Liu.Geometric data perturbation for privacy preserving outsourced data mining[J].Knowledge and Information Systems,2011,29(3):657-695.
[14]  Y Sang,H Shen,H Tian.Reconstructing data perturbed by random projections when the mixing matrix is known[A].Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases[C].Berlin:Springer,2009.334-349.
[15]  P Anna,P Rasmus.Uniform hashing in constant time and optimal space[J].SIAM Journal on Computing,2008,38(1):85-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133