全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Simulation of a New Model for Treatment by NCT

DOI: 10.1155/2012/213640

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this investigation, neutron capture therapy (NCT) through high energy neutrons using Monte Carlo method has been studied. In this study a new method of NCT for a sample liver phantom has been defined, and interaction of 12?MeV neutrons with a multilayer spherical phantom is considered. In order to reach the desirable energy range of neutrons in accord with required energy in absence of eligible clinical neutron source for NCT, this model of phantom might be utilized. The neutron flux and the deposited dose in the all components and different layers of the mentioned phantom are computed by Monte Carlo simulation. The results of Monte Carlo method are compared with analytical method results so that by using a computer program in Turbo-Pascal programming, the deposited dose in the liver phantom has been computed. 1. Introduction Neutron capture therapy (NCT) has been one of the most important methods for treatment of cancers in recent years. This method of radiation therapy is applicable in treatment of liver cancer. During clinical practice, it is always essential to stop absorption of additional dose by normal tissue. On the other hand, measurement and assessment of the absorbed dose and its calibration is an important matter [1, 2]. Thus computation and modeling of the deposited dose by Monte Carlo method before practical treatment is recommended. An appropriate software tool for this purpose is MCNP4C code. It is a particular engineering solution when BNCT facilities such as low energy neutron source are not available. In this paper for simulation by MCNP4C code, a phantom is considered so that it has been encased by polyethylene sphere with 20?cm radius. This sphere is covered with a layer of cadmium which has 100? m thickness [3, 4]. The cadmium layer has high absorption cross-section for thermal neutrons and helps to reentrance the scattered neutrons from surface of the sphere to the phantom [5]. The polyethylene sphere is surrounded by a graphite shell which has 25?cm radius and 5?mm thickness (according to moderation ratio: ). This layer serves as a reflector to reduce escaping the fast neutrons [6]. In the present work, neutrons are emitted from an external source, and after passing through polyethylene and slowing down, their deposited energy in the phantom’s materials is computed by the MCNP4C code. The F6 tally in the MCNP4C code is applied. The absorbed energy in the liver is computed through analytical computations as well. It includes generation of random numbers along with using the neutron diffusion equation [7]. The outcomes of two

References

[1]  E. C. C. Pozzi, S. Thorp, J. Brockman, M. Miller, D. W. Nigg, and M. Frederick Hawthorne, “Intercalibration of physical neutron dosimetry for the RA-3 and MURR thermal neutron sources for BNCT small-animal research,” Applied Radiation and Isotopes, vol. 69, no. 12, pp. 1921–1923, 2011.
[2]  R. L. Moss, O. Aizawa, D. Beynon et al., “The requirements and development of neutron beams for neutron capture therapy of brain cancer,” Journal of Neuro-Oncology, vol. 33, no. 1-2, pp. 27–40, 1997.
[3]  M. Reginatto, “What can we learn about the spectrum of high-energy stray neutron fields from Bonner sphere measurements?” Radiation Measurements, vol. 44, no. 7-8, pp. 692–699, 2009.
[4]  M. L. Andrieux, B. Dinkespiler, J. Lundquist, O. Martin, and M. Pearce, “Neutron and gamma irradiation studies of packaged VCSEL emitters for the optical read-out of the ATLAS electromagnetic calorimeter,” Nuclear Instruments and Methods in Physics Research, vol. 426, no. 2, pp. 332–338, 1999.
[5]  M. P. Dhairyawan, P. S. Nagarajan, and G. Venkataraman, “Response functions of spherically moderated neutron detectors,” Nuclear Instruments and Methods, vol. 169, no. 1, pp. 115–120, 1980.
[6]  A. Bolewski, M. Ciechanowski, A. Dydejczyk, and A. Kreft, “On the optimization of the isotopic neutron source method for measuring the thermal neutron absorption cross section: advantages and disadvantages of BF3 and 3He counters,” Applied Radiation and Isotopes, vol. 66, no. 4, pp. 457–462, 2008.
[7]  H. R. Vega-Carrillo, V. Hernandez-Davila, E. Manzanares-Acu?a et al., “Neutron spectrometry using artificial neural networks,” Radiation Measurements, vol. 41, no. 4, pp. 425–431, 2006.
[8]  F. Trompier, P. Battaglini, D. Tikunov, and I. Clairand, “Dosimetric response of human bone tissue to photons and fission neutrons,” Radiation Measurements, vol. 43, no. 2–6, pp. 837–840, 2008.
[9]  G. Bartesaghi, J. Burian, G. Gambarini, M. Marek, A. Negri, and L. Viererbl, “Evaluation of all dose components in the LVR-15 reactor epithermal neutron beam using Fricke gel dosimeter layers,” Applied Radiation and Isotopes, vol. 67, no. 7-8, pp. S199–S201, 2009.
[10]  D. Zhou, E. Semones, R. Gaza et al., “Radiation measured during ISS-Expedition 13 with different dosimeters,” Advances in Space Research, vol. 43, no. 8, pp. 1212–1219, 2009.
[11]  S. J. González, M. R. Bonomi, G. A. S. Santa Cruz et al., “First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome,” Applied Radiation and Isotopes, vol. 61, no. 5, pp. 1101–1105, 2004.
[12]  J. McBride, M. Mason, and E. Scott, “The storage of the major liver components,” The Journal of Biological Chemistry, vol. 1, pp. 943–952, 1941.
[13]  J. T. Goorley, W. S. Kiger, and R. G. Zamenhof, “Reference dosimetry calculations for Neutron Capture Therapy with comparison of analytical and voxel models,” Medical Physics, vol. 29, no. 2, pp. 145–156, 2002.
[14]  T. Tagami and S. Nishimura, “Intercalibration of thermal neutron dosimeter glasses NBS-SRM612 and corning 1 in some irradiation facilities: a comparison,” International Journal of Radiation Applications and Instrumentation. Part, vol. 16, no. 1, pp. 11–14, 1989.
[15]  D. Rochman, R. C. Haight, S. A. Wender et al., “First measurements with a lead slowing-down spectrometer at LANSCE,” in Proceedings of the International Conference on Nuclear Data for Science and Technology (AIP '04), pp. 736–739, October 2004.
[16]  T. Matsumoto, H. Harano, Y. Ito, A. Uritani, K. Emi, and K. Kudo, “Development of a fast neutron spectrometer composed of silicon-SSD and position-sensitive proportional counters,” Radiation Protection Dosimetry, vol. 110, no. 1–4, pp. 223–226, 2004.
[17]  J. Chuncheng, G. H. R. Kegel, J. J. Egan et al., “Measurement of U-235 fission neutron spectra using a multiple gamma coincidence technique,” in Proceedings of the International Conference on Nuclear Data for Science and Technology (AIP '04), vol. 769, pp. 1051–1053, October 2004.
[18]  H. Kahn, “Application of Monte Carlo,” USAEC Report AECU-3259, Rand Corporation, Santa Monica, Calif, USA, 1954.
[19]  S. Y. Hohara, M. Imamura, T. Kin et al., “Development of gas proportional scintillation counter for light heavy-ion detection,” in Proceedings of the International Conference on Nuclear Data for Science and Technology(AIP '04), pp. 773–775, October 2004.
[20]  S. H. Shinde and T. Mukherjee, “Sensitization of glycine (spectrophotometric read-out) dosimetric system using sorbitol,” Radiation Measurements, vol. 44, no. 4, pp. 378–383, 2009.
[21]  T. Taosheng, L. Dong, and H. Li, “A Monte Carlo design of a neutron dose-equivalent survey meter based on a set of 3He proportional counters,” Radiation Measurements, vol. 42, no. 1, pp. 49–54, 2007.
[22]  M. Stacy, Nuclear Reactor Physics (SE), Chapter 5, John Wiley Publishing Company, New York, NY, USA, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133