全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

基于MV代数语义的格值逻辑的程度化方法

DOI: 10.3969/j.issn.0372-2112.2013.10.026, PP. 2035-2040

Keywords: MV代数,格值逻辑,概率真度,概率逻辑度量空间,近似推理

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于MV代数(Many-Valuedalgebra)语义,通过在MV代数赋值格和全体命题集上分别建立概率测度,利用积分方法提出了一种格值逻辑上命题的概率真度.由此可诱导出命题集上的伪距离,进而在格值逻辑上建立了概率逻辑度量空间并展开程度化推理.本文将计量逻辑学中近似推理方法推广到格值逻辑上,为格值逻辑的程度化提供了一种可行的方法.

References

[1]  Rosser J B,Turquette A R.Many-valued Logics[M].Amsterdam:North-Holland,1952.
[2]  Wang G J,Fu L,et al.Theory of truth degrees of propositions in two valued logic[J].Sci China Ser A-Math,2002,45(9):1106-1116.
[3]  Wang G J,Leung Y.Integrated semantics and logic metric spaces[J].Fuzzy Set and Systems,2003,136(1):71-91.
[4]  Zhou H J,Wang G J,Zhou W.Consistency degrees of theories and methods of graded reasoning in n-valued R0-logic (NM-logic)[J].International Journal of Approximate Reasoning,2006,43(2):117-132.
[5]  Wang G J,Zhou H J.Quantitative logic[J].Information Sciences,2009,179(3):226-247.
[6]  张东晓,李立峰.二值命题逻辑公式的语构程度化方法[J].电子学报,2008,36(2):325-330. Zhang D X,Li L F.Syntactic graded method of two-valued propositional logic formulas[J].Acta Electronica Sinica,2008,36(2):325-330.(in Chinese)
[7]  罗敏霞,姚宁.L*系统中公式的语构程度化方法[J].电子学报,2011,39(2):424-428. Luo M X,Yao N.Syntactic graded method of formulas in the system L*[J].Acta Electronica Sinica,2011,39(2):424-428.(in Chinese)
[8]  徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-26.
[9]  傅丽,宋建社.经典命题逻辑的Boole语义理论[J].模糊系统与数学,2007,21(2):46-52. Fu L,Song J S.Theory of Boolean semantics of classical propositional logic[J].Fuzzy Systems and Mathematics,2007,21(2):46-52.(in Chinese)
[10]  段景瑶,王国俊.关于Boole语义的真度不变性定理[J].模糊系统与数学,2008,22(2):36-40. Duan J Y,Wang G J.Invariable properties of truth degrees on Boolean semantics.Fuzzy Systems and Mathematics,2008,22(2):36-40.(in Chinese)
[11]  左卫兵.Boole语义的程度化方法[J].电子学报,2012,40(3):441-447. Zuo W B.Graded method of Boolean semantics[J].Acta Electronica Sinica,2012,40(3):441-447.(in Chinese)
[12]  Chang C C.Algebraic analysis of many valued logics[J].Transactions of the American Mathematical Society,1958,88(2):467-490.
[13]  左卫兵.多值逻辑系统中公式的μ-真度理论[J].系统科学与数学,2011,31(7):879-892.
[14]  Pavelka J.On fuzzy logic(Ⅰ,Ⅱ,Ⅲ)[J].Zeitschr f Math logik u Grundlagen d Math,1979,25:45-52,119-134,447-464.
[15]  Ying M S.A logic for approximate reasoning[J].Journal of Symbolic Logic,1994,59(3):830-837.
[16]  Li B J,Wang G J.Theory of truth degrees of formulas in Lukasiewicz n-valued propositional logic and a limit theorem[J].Sci China Ser F-Inf Sci,2005,48(6):727-736.
[17]  Li J,Wang G J.Theory of truth degress of propositions in the logic system L*n[J].Sci China Ser F-Inf Sci,2006,49(4):471-483.
[18]  Wang G J,Hui X J.Randomization of classical inference patterns and its application[J].Sci China Ser F-Inf Sci,2007,50(6):867-877.
[19]  Wang G J,Zhou H J.Introduction to Mathematical Logic and Resolution Principle.Beijing:Science Press,Oxford:Alpha Science International Limited,2009.
[20]  Zhou H J,Wang G J.Borel probabilistic and quantitative logic[J].Sci China Inf Sci,2011,54(9):1843-1854.
[21]  王国俊.一类一阶逻辑公式中的公理化真度理论及其应用[J].中国科学:信息科学,2012,42(5):648-662.
[22]  Xu Y,Qin K Y,Liu J.L-valued propositional logic Lvpl[J].Information Scicence,1999,114(1):205-235.
[23]  左卫兵,叶晓枫.有限Boole语义的随机化[J].兰州理工大学学报,2012,38(1):143-148.
[24]  王国俊,周红军.MV代数的度量化研究及其在Lukasiewicz命题逻辑中的应用[J].数学学报,2009,52(3):501-514.
[25]  Halmos P R.Measure Theory[M].New York:Springe-Verlag,1974.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133