全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

基于C0算法的混沌系统复杂度特性分析

DOI: 10.3969/j.issn.0372-2112.2013.09.015, PP. 1765-1771

Keywords: C0算法,动力学特性,复杂度,简化Lorenz系统,超混沌Lorenz系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用C0复杂度算法,分析了Logistic映射、简化Lorenz系统和超混沌Lorenz系统的复杂度特性,并与系统的Lyapunov指数谱和分岔图进行对比,结果表明,C0复杂度能正确反映系统的复杂度特性;三系统复杂度从大到小依次为Logistic系统、超混沌Lorenz系统和简化Lorenz系统.将C0复杂度算法与谱熵算法(SE)和强度统计算法(LMC)计算结果对比,进一步说明C0算法分析混沌系统复杂度的有效性.系统复杂度随时间演化的特性分析表明,系统复杂度在一定范围内波动,即系统具有演化稳定性,两连续系统中y序列复杂度最大.为混沌系统应用于信息加密、保密通信领域提供了理论与实验依据.

References

[1]  杨磊,潘炜,罗斌.光纤激光器延时反馈的动态特性与复杂度研究[J].光电子·激光,2011,22(6):816-819. Yang L,Pan W,Luo B.Dynamical behaviors and complexity of erbium-doped fiber dualring laser with time delay feedback[J].Journal of Optoelectronics·laser,2011,22(6):816-819.(in Chinese)
[2]  肖方红,阎桂荣,韩宇航.混沌伪随机序列复杂度分析的符号动力学方法 [J].物理学报,2004,53(9):2877-2881. Xiao F H,Yan G R,Han Y H.A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences[J].Acta Physica Sinica,2004,53(9):2877-2881.(in Chinese)
[3]  孙克辉,贺少波,盛利元.基于强度统计算法的混沌序列复杂度分析[J].物理学报,2011,60(2):1-7. Sun K H,He S B,Sheng L Y.Complexity analysis of chaotic sequence based on the intensive statistical complexity algorithm[J].Acta Physica Sinica,2011,60(2):1-7.(in Chinese)
[4]  Abdulnasir Y,Mehmet A,Mustafa P.Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction[J].Expert Systems with Applications,2009,36(4):7390-7399.
[5]  Chen F,Xu J H,Gu F J.Dynamic process of information transmission complexity in human brains[J].Biological Cybernetics,2000,83(4):355-366.
[6]  Gu F J,Meng X,Shen E H.Can we measure consciousness with EEG complexities[J].International Journal of Bifurcation and Chaos,2003,13(3):733-742.
[7]  蔡志杰,孙洁.改进的C0复杂度及其应用[J].复旦学报,2008,47(6):791-796. Cai Z J,Sun J.Modified C0 complexity and applications[J].Journal of Fudan University,2008,47(6):791-796.(in Chinese)
[8]  Sun K H,Sprott J C.Dynamics of a simplified Lorenz system[J].International Journal of Bifurcation and Chaos,2009,19(4):1357-1366.
[9]  Wolf A,Swift J,Swinney H.Determining Lyapunov exponents from a time series[J].Physica D,1985,16(3):285-317.
[10]  Davoud A.Measures of order in dynamic systems[J].Journal of Computational and Nonlinear Dynamics,2008,3(3):031002-1-031002-10.
[11]  Kolmogorov A N.Three approaches to the definition of the concept"quantity of information"[J].Problem of Information Transission,1965,35(1):1546-1550.
[12]  孙克辉,谈国强,盛利元,等.TD-ERCS离散混沌伪随机序列的复杂性分析[J].物理学报,2008,57(6):3359-3366. Sun K H,Tan G Q,Sheng L Y,et al.The complexity analysis of TD-ERCS discrete chaotic pseudo-random sequences [J].Acta Physica Sinica,2008,57(6):3359-3366.(in Chinese)
[13]  Richman J S,Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J].Heart and Circulatory Physiology,2000,278(6):2039-2049.
[14]  Chen W T,Zhuang J,Yu W X,et al.Measuring complexity using FuzzyEn,ApEn,and SampEn[J].Medical Engineering and Physics,2009,31(1):61-68.
[15]  Malihe S,Serajeddin K,Reza B.Entropy and complexity measures for EEG signal classification of schizophrenic and control participants[J].Artificial Intelligence in Medicine,2009,47(3):263-274.
[16]  Cao Y,Cai Z J,Shen E H,et al.Quantitative analysis of brain optical images with 2D C0 complexity measure[J].Journal of Neuroscience Methods,2007,159(1):181-186.
[17]  Shen E H,Cai Z J,Gu F J.Mathematical foundation of a new complexity measure[J].Applied Mathematics and Mechanics,2005,26(9):1188-1196.
[18]  王兴元,王明军.超混沌Lorenz系统[J].物理学报,2007,56(9):5136-5141. Wang X Y,Wang M J.Hyperchaotic Lorenz system[J].Acta Physica Sinica,2007,56(9):5136-5141.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133