全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于自适应多字典学习的单幅图像超分辨率算法

DOI: 10.3969/j.issn.0372-2112.2015.02.001, PP. 209-216

Keywords: 超分辨率,稀疏表示,自适应字典学习,全局字典学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息.该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典.实验表明,与ScSR、SISR、NLIBP、CSSS以及mSSIM等算法相比,本文算法具有更好的超分重建效果.

References

[1]  Freeman W T,Jones T R,Pasztor E C.Example-based super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65.
[2]  Daubechies I,Defrise M,De Mol C.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics,2004,57(11):1413-1457.
[3]  邵文泽,韦志辉.基于各向异性MRF建模的多帧图像变分超分辨率重建[J].电子学报,2009,37(6):1256-1263. Shao Wenze,Wei Zhihui.Multi-frame super-resolution reconstruction based on anisotropic Markov random field modeling[J].Acta Electronica Sinica,2009,37(6):1256-1263.(in Chinese)
[4]  宋锐,吴成柯,封颖,张云锋.一种新的基于MAP的纹理自适应超分辨率图像复原算法[J].电子学报,2009,37(5):1124-1129. Song Rui,Wu Chengke,Feng Ying,Zhang Yunfeng.A new MAP based texture adaptive super-resolution image reconstruction algorithm[J].Acta Electronica Sinica,2009,37(5):1124-1129.(in Chinese)
[5]  Yang J,Wright J,Huang T S,Ma Y.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.
[6]  Protter M,Elad M,Takeda H,Milanfar P.Generalizing the nonlocal-means to super-resolution reconstruction[J].IEEE Transactions on Image Processing,2009,18(1):36-51.
[7]  Dong W,Zhang L,Shi G,Wu X.Nonlocal back-projection for adaptive image enlargement[A].Proceedings of the 2009 IEEE International Conference on Image Processing[C].Cairo,Egypt:IEEE Computer Society,2009.349-352.
[8]  Glasner D,Bagon S,Irani M.Super-resolution from a single image[A].Proceedings of the 12th International Conference on Computer Vision[C].Kyoto,Japan:IEEE Inc,2009.349-356.
[9]  Pan Z,Yu J,Huang H,Hu S,Zhang A,Ma H,Sun W.Super-resolution based on compressive sensing and structural self-similarity for remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4864-4876.
[10]  潘宗序,禹晶,胡少兴,孙卫东.基于多尺度结构自相似性的单幅图像超分辨率算法[J].自动化学报,2014,40(4):594-603. Pan Zongxu,Yu Jing,Hu Shaoxing,Sun Weidong.Single image super resolution based on multi-scale structural self-similarity[J].Acta Automatica Sinica,2014,40(4):594-603.(in Chinese)
[11]  Engan K,Aase S O,Husoy J H.Method of optimal directions for frame design[A].Proceedings of the 1999 IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Phoenix,AZ,USA:IEEE,1999.2443-2446.
[12]  Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[13]  Elad M,Aharon M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.
[14]  Gribonval R,Nielsen M.Sparse representations in unions of bases[J].IEEE Transactions on Information Theory,2003,49(12):3320-3325.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133