Rosser J B,Turquette A R.Many-Valued Logics[M].Amsterdam:North-Holland,1952.46-66.
[2]
Pavelka J.On fuzzy logic(I,II,III)[J].Zeitschr f Math Logik u Grundlagen d Math.1979,25:45-52,119-134,447-464.
[3]
Ying M S.A logic for approximate reasoning[J].J Symbolic Logic,1994,59(3):830-837.
[4]
Wang G J,Fu L,Song J S.Theory of truth degrees of propositions in two valued logic[J].Sci China Ser A-Math,2002,45(9):1106-1116.
[5]
Wang G J,Leung Y.Integrated semantics and logic metric spaces[J].Fuzzy Set and Systems,2003,136(1):71-91.
[6]
Li B J,Wang G J.Theory of truth degrees of formulas in Lukasiewicz n-valued propositional logic and a limit theorem[J].Sci China Ser F-Inf Sci,2005,48(6):727-736.
[7]
Zhou H J,Wang G J,Zhou W.Consistency degrees of theories and methods of graded reasoning in n-valued R0-logic (NM-logic)[J].International Journal of Approximate Reasoning,2006,43(2):117-132.
[8]
Wang G J,Zhou H J.Quantitative logic[J].Information Sciences,2009,179(3):226-247.
[9]
Wang G J,Zhou H J.Introduction to Mathematical Logic and Resolution Principle[M].Beijing:Science Press,Oxford:Alpha Science International Limited,2009.76-105.
[10]
罗敏霞,姚宁.L*系统中公式的语构程度化方法[J].电子学报,2011,39(2):424-428. Luo M X,Yao N.Syntactic graded method of formulas in the system L*[J].Acta Electronica Sinica,2011,39(2):424-428.(in Chinese)
[11]
Zhou H J,Wang G J.Borel probabilistic and quantitative logic[J].Sci China Inf Sci,2011,54(9):1843-1854.
[12]
王国俊.一类一阶逻辑公式中的公理化真度理论及其应用[J].中国科学:信息科学,2012,42(5):648-662. Wang G J.Axiomatic theory of truth degree for a class of first-order formulas and its application[J].Sci China Inf Sci,2012,42(5):648-662.(in Chinese)
[13]
Wang G J.A unified integrated method for evaluating goodness of propositions in several propositional logic systems and its applications[J].Chinese Journal of Electronics,2012,21(2):195-201.
[14]
时慧娴,王国俊.多值模态逻辑的计量化方法[J].软件学报,2012,23(12):3074-3087. Shi H X,Wang G J.Quantitative method for multi-valued modal logics[J].Journal of Software,2012,23(12):3074-3087.(in Chinese)
[15]
徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-26. Xu Y.Lattice implication algrbras[J].Jounral of Southwest Jiaotong University,1993,28(1):20-26.(in Chinese)
[16]
Xu Y,Qin K Y,Liu J.L-valued propositional logic Lvpl[J].Information Scicence,1999,114(1):205-235.
[17]
裴道武.强正则剩余格值逻辑系统LN及其完备性[J].数学学报,2002,45(4):745-752. Pei D W.A logic system based on strong regular reseiduated lattices and its completeness[J].Acta Mathematica Sinca,2002,45(4):745-752.(in Chinese)
[18]
傅丽,宋建社.经典命题逻辑的Boole语义理论[J].模糊系统与数学,2007,21(2):46-52. Fu L,Song J S.Theory of boolean semantics of classical propositional logic[J].Fuzzy Systems and Mathematics,2007,21(2):46-52.(in Chinese)
[19]
左卫兵.Boole语义的程度化方法[J].电子学报,2012,40(3):441-447. Zuo W B.Graded method of Boolean semantics[J].Acta Electronica Sinica,2012,40(3):441-447.(in Chinese)
[20]
左卫兵.基于MV代数语义的格值逻辑的程度化方法[J].电子学报,2013,41(10):2035-2040. Zuo W B.Graded method of lattice-valued logic based on MV-algebra semantics[J].Acta Electronica Sinica,2013,41(10):2035-2040.(in Chinese)
[21]
Esteva F,Godo L.Monoidal t-norm based logic:towards a logic for left-continuous t-norm[J].Fuzzy Sets and Systems,2001,124(3):271-288.
[22]
Liu L Z.On the existence of states on MTL-algebras[J].Information Sciences,2013,220:559-567.
[23]
李璧镜,王国俊.正则蕴涵算子所对应的逻辑伪度量空间[J].电子学报,2010,38(3):497-502. Li B J,Wang G J.Logic pseudo-metric spaces of regular implication operators[J].Acta Electronica Sinica,2010,38(3):497-502.(in Chinese)
[24]
左卫兵.多值逻辑系统中公式的μ-真度理论[J].系统科学与数学,2011,31(7):879-892. Zuo W B.μ-truth degree of formula in many-valued propositional logic[J].Journal of Systems Science and Mathematical Science,2011,31(7):879-892.(in Chinese)