全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于后验HOG特征的多姿态行人检测

DOI: 10.3969/j.issn.0372-2112.2015.02.002, PP. 217-224

Keywords: 后验HOG特征,梯度能量图,S-Isomap,支持向量机,行人检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

行人检测是当前计算机视觉领域的挑战性课题之一.本文提出一种基于后验HOG特征的多姿态行人检测方法.首先,统计全部行人样本的梯度特征能量共性信息,对单个行人样本的HOG特征进行加权获得能够表现行人边缘轮廓的后验HOG特征,有效减少复杂背景的影响.其次,利用S-Isomap特征降维方法和K-means聚类方法对不同姿态和视角的行人做子类划分,并针对每一个子类训练子类分类器.最后,根据多个不同姿态的子类分类器输出值,训练等权重加和方式的多姿态-视角集成分类器.不同数据集上的测试结果表明,本文所提利用共性信息获得的后验特征超过了经典HOG和其它典型特征的描述能力.与现有方法相比,通过将所提出的特征与多姿态-视角集成分类器结合,有效地提高了检测精度.

References

[1]  苏松志,李绍滋,陈淑媛,等.行人检测技术综述[J].电子学报,2012,40(4):814-820. S Z Su,S Z Li,S Y Chen,et al.A survey on pedestrian detection[J].Acta Electronica Sinica,2012,40(4):814-820.(in Chinese)
[2]  N Dalal,B Triggs.Histograms of oriented gradients for human detection[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].San Diego,CA,USA:IEEE,2005.886-893.
[3]  D Gerónimo,A López,D Ponsa,A Sappa,Haar wavelets and edge orientation histograms for on–board pedestrian detection[A].Pattern Recognition and Image Analysis[C].Germany:Springer Berlin Heidelberg,2007.418-425.
[4]  B Wu,R Nevatia,Detection of multiple,partially occluded humans in a single image by Bayesian combination of edgelet part detectors[A].IEEE International Conference on Computer Vision[C].China:IEEE,2005.
[5]  种衍文,匡湖林,李清泉.一种基于多特征和机器学习的分级行人检测方法[J].自动化学报,2012,37(12):375-381. Y W Chong,H L Kuang,Q Q Li.Two-stage pedestrian detection based on multiple features and machine learning[J].Acta Automatica Sinica,2012,37(12):375-381.(in Chinese)
[6]  X Wang,T X Han,S Yan,An HOG-LBP human detector with partial occlusion handling[A].IEEE International Conference Computer Vision[C].Kyoto:IEEE,2009.32-39.
[7]  W R Schwartz,A Kembhavi,D Harwood, L S Davis,Human detection using partial least squares analysis[A].IEEE International Conference on Computer Vision[C].Kyoto:IEEE,2009.24-31
[8]  X Geng,D C Zhan,Z H Zhou.Supervised nonlinear dimensionality reduction for visualization and classification[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2005,35(6):1098-1107.
[9]  J Tenenbaum,V D Silva,J Langford.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
[10]  A Ess,B Leibe,K Schindler,et al.A mobile vision system for robust multi-person tracking[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Anchorage,AK:IEEE,2008.1-8.
[11]  A Mogelmose,A Prioletti,M Trivedi,et al.Two-stage part-based pedestrian detection[A].IEEE International Conference on Intelligent Transportation Systems[C].Anchorage,AK,USA:IEEE,2012.73-77.
[12]  I Alonso,D Llorca,M Sotelo,L Bergasa,P de Toro,J Nuevo,M Ocana,M Garrido,Combination of feature extraction methods for SVM pedestrian detection[J].IEEE Transactions on Intelligent Transportation Systems,2007,8(2):292-307.
[13]  L Oliveira,U Nunes,P Peixoto,On exploration of classifier ensemble synergism in pedestrian detection[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(1):16-27.
[14]  Y W Xu,D Xu,S Lin,et al.Detection of sudden pedestrian crossings for driving assistance systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(3):729-739.
[15]  D Geronimo,A M Lopez,A D Sappa,et al.Survey of pedestrian detection for advanced driver assistance systems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(7):1239-1258.
[16]  田广,戚飞虎.移动摄像机环境下基于特征变换和SVM的分级行人检测算法[J].电子学报,2008,36(5):1024-1028. G Tian,F H Qi.Feature transformation and SVM based hierarchical pedestrian detection with a monocular moving camera[J].Acta Electronica Sinica,2008,36(5):1024-1028.(in Chinese)
[17]  B Li,Q Yao,K Wang.A review on vision-based pedestrian detection in intelligent transportation systems[A].9th IEEE International Conference on Networking,Sensing and Control[C].Beijing:IEEE,2012.393-398.
[18]  P Dollar,C Wojek,B Schiele,et al.Pedestrian detection:An evaluation of the state of the art[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(04):743-761.
[19]  M Enzweiler,D M Gavrila.Monocular pedestrian detection:survey and experiments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2179-2195.
[20]  P Sabzmeydani,G Mori,Detecting pedestrians by learning shapelet features[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Minneapolis,MN:IEEE,2007.1-8.
[21]  Y Mu,S Yan,Y Liu,et al.Discriminative local binary patterns for human detection in personal album[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Anchorage,AK:IEEE,2008.1-8.
[22]  S Walk,N Majer,K Schindler,B Schiele.New features and insights for pedestrian detection[A].IEEE Conference on Computer Vision and Pattern Recognition[C].San Francisco,CA:IEEE,2010.1030-1037.
[23]  C Papageorgiou,T Poggio,A trainable system for object detection[J].International Journal of Computer Vision,2000,38(1):15-33.
[24]  X Su,W Lin,X Zheng,et al.A new local-main gradient orientation HOG and contour differences based algorithm for object classification[A].IEEE International Symposium on Circuits and Systems[C].Beijing:IEEE,2013.2892-2895.
[25]  A Shashua,Y Gdalyahu,G Hayun.Pedestrian detection for driving assistance systems:Single-frame classification and system level performance[A].IEEE Intelligent Vehicles Symposium[C].Italy:IEEE,2004.1-6.
[26]  A Prioletti,A Mgelmose,P Grisleri,M Trivedi,A Broggi,T Moeslund,Part-based pedestrian detection and feature-based tracking for driver assistance:real-time,robust algorithms,and evaluation[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1346-1359.
[27]  K Guto,K Kidono,Y Kimura,T Naito.Pedestrian Detection and Direction Estimation by Cascade Detector with Multi-classifiers Utilizing Feature Interaction Descriptor[A].IEEE Intelligent Vehicles Symposium[C].Germany:IEEE,2011.224-229.
[28]  Q Ye,J Liang,J Jiao.Pedestrian detection in video images via error correcting output code classification of manifold subclasses[A].IEEE International Conference on Intelligent Transportation Systems[C].Anchorage,AK,USA:IEEE,2012.193-202.
[29]  T Ojala,Multi resolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133